首页|时空注意力图卷积神经网络水下节点时钟同步算法

时空注意力图卷积神经网络水下节点时钟同步算法

扫码查看
时钟同步是水下无线传感器网络工作的核心机制。实时、准确的节点移动速度是构建高精度时钟同步算法的重要保障,针对同步过程由于节点移动速度难以估算导致同步精度低和能耗高等问题,提出一种基于注意力机制和图卷积神经网络相结合的时钟同步算法。首先,利用深海拉格朗日洋流模型模拟节点的运动轨迹,由洋流模型粗略估计出节点的速度;对节点速度、水下环境信息集和时间占比进行融合处理,来作为图神经网络输入特征;其次使用注意力机制结合输入特征构建时空注意力权重矩阵,并根据特征数据自适应地调整权重矩阵;再联合图卷积神经网络捕捉节点速度之间、位移之间的空间性特征;在此基础上再堆叠标准卷积层进一步合并相邻时间的节点信息以获取时间相关性,然后构造节点移动模型进而实时有效地预测出节点移动速度,最后快速计算出节点动态的传播时延完成时钟同步。实验结果表明,本文算法在精度上分别比TSHL算法、D-sync算法、K-sync算法提升了 26%、20%和11%,在能耗上也优于现有的时钟同步算法。
An Underwater Node Clock Synchronization Algorithm Based on Spatiotemporal Attention Graphs by Convolutional Neural Networks
Clock synchronization is the core mechanism of underwater wireless sensor networks.Real-time and accurate node movement speed is an important guarantee for constructing high-precision clock synchronization algorithm.To solve the problem of time-varying propagation delay and high energy consumption caused by node movement in synchronization process,this paper proposes a clock syn-chronization algorithm based on the combination of attention mechanism and graph convolutional neural network.Firstly,the Lagrange current model is used to simulate the trajectory of the node,and the ve-locity of the node is roughly estimated from the ocean current model.Node velocity,underwater envi-ronment information set and time ratio are fused to be used as network input features.Secondly,the spatial and temporal attention weight matrix is constructed using the attention mechanism combined with the input features,and the weight matrix is adjusted adaptively according to the feature data.The reunion graph convolutional neural network captures the spatial characteristics between node velocities and displacements.On this basis,the stack standard convolutional layer further merges the node infor-mation of adjacent time to obtain the time correlation,and then constructs the node movement model to effectively predict the node movement speed in real time,and finally quickly calculates the node dy-namic propagation delay to complete the clock synchronization.Experimental results show that the pro-posed algorithm improves the accuracy of TSHL algorithm,D-sync algorithm and K-sync algorithm by 26%,20%and 11%respectively.In terms of energy consumption,the proposed algorithm is also bet-ter than the existing clock synchronization algorithm.

Clock synchronizationocean current modelattention mechanismgraph convolutional neural network

李华、邓金燕

展开 >

凯里学院,贵州凯里 556011

时钟同步 洋流模型 注意力机制 图卷积神经网络

2024

凯里学院学报
凯里学院

凯里学院学报

CHSSCD
影响因子:0.207
ISSN:1673-9329
年,卷(期):2024.42(3)
  • 6