首页|How the enhanced East Asian summer monsoon regulates total gross primary production in eastern China
How the enhanced East Asian summer monsoon regulates total gross primary production in eastern China
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
国家科技期刊平台
NETL
NSTL
万方数据
Recognizing the relationship between gross primary production(GPP)and precipitation in eastern China,the East Asian Summer Monsoon(EASM)plays a crucial role in shaping GPP.Despite confirmation of the strong link between EASM and GPP,there remains a notable research gap in understanding the specific impact of the EASM on GPP in different regions of eastern China.Here we used simulations from Trends in Net Land-Atmosphere Carbon Exchanges(TRENDY)models from 1951 to 2010 and divided eastern China into five subregions for the study.We also used the New East Asian Summer Monsoon Index(NEWI)as a quantitative metric to distinguish between periods of strong and weak EASM.Building on this,this study aims to investigate the response of GPP in different subregions of eastern China.Regionally,under strengthened EASM years(1954,1957,1965,1969,1977,1980,1983,1987,1993 and 1998),East China experienced the most pronounced increase in GPP at 12±21(mean±1 sigma)gC m-2 mon-1 compared to the weak EASM years(1958,1961,1972,1973,1978,1981,1985,1994,1997 and 2004).In contrast,Southwest China showed a decline in GPP at-4±10 gC m-2 mon-1.Moreover,GPP also increased in Northeast and North China when EASM strengthened,while South China showed a decline in GPP.This indicated that GPP changed with monsoon intensity.According to the mechanism analysis,during strong EASM,there was intense moisture convergence through alterations in the atmospheric circulation field over East China and abundant precipitation,which further contributed to the increase in GPP.Downward solar radiation in Southwest China decreased with EASM enhancement,which suppressed GPP and hindered vegetation growth.Overall,the results highlight the importance of accurately predicting the impact of different EASM intensities of regional carbon fluxes.
Gross primary productionSurface air temperaturePrecipitationSolar radiationEastern ChinaCarbon cycle
Ming-Yu HAN、Yong ZHANG、Jing PENG
展开 >
China State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing 100081,China
China Meteorological Administration Institute for Development and Programme Design,Beijing 100081,China
CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia,Institute of Atmospheric Physics,Chinese Academy of Sciences(CAS),Beijing 100029,China