首页|大型靶目标粒子辐照蒙特卡罗计算后处理方法

大型靶目标粒子辐照蒙特卡罗计算后处理方法

扫码查看
蒙特卡罗(MonteCarlo,MC)方法是辐照损伤、辐照屏蔽研究中应用最广泛的方法之一.在对机场、铁路、舰船等大型靶目标开展辐照损伤研究时,通常关注靶目标的3D建模及辐照计算,而对计算后的数据分析多采用人工方式,工作难度大、效率低,成为制约相关研究的技术瓶颈.开展靶目标粒子辐照MC计算可视化后处理方法研究,建立了基于KD树(k-dimensional tree,KDtree)+反距离加权(inverse distance weight,IDW)和基于遗传算法优化反向传播(genetic algorithm based backpropagation,GABP)神经网络的后处理模型,实现了数据与模型结合的可视化分析.与传统数据分析方法相比,提出的方法能够大幅减低研究人员工作难度,提升数据处理速度,实现辐照效应直观展示,提升辐照效应研究后处理工作效率.
Post-processing methods for particle radiation Monte Carlo calculations of large-scale target objects
The Monte Carlo(MC)method is one of the most widely applied methods in the simulation study of radiation damage and radiation shielding.When conducting radiation damage studies on large targets such as airports,railways,and ships,the focus is generally on 3D modeling and radiation calculations of these targets;however,the post-calculation data analysis often relies on manual methods,making this aspect of the research technically challenging and inefficient,thus becoming a bottleneck in related research efforts.In this paper,a visualization post-processing method for MC calculations of target particle irradiation is studied,and a post-processing model based on k-dimensional tree(KDtree)+inverse distance weighting(IDW)and genetic algorithm based backpropagation(GABP)neural network is established to realize the visualization analysis of data combined with the model.Compared with traditional data analysis methods,the method proposed in this paper can greatly reduce the difficulty of researchers'work,improve the speed of data processing,realize the visual display of radiation effects,and enhance the efficiency of post-processing in radiation effects research.

particle irradiationgenetic algorithmBP neural networkKDtreeinverse distance weightingpost-processing

胡友涛、范杰清、赵强、王浩洋、张芳、张硕、崔雅萍、郝建红、董志伟

展开 >

华北电力大学电气与电子工程学院,北京 102206

北京应用物理与计算数学研究所,北京 100094

粒子辐照 遗传算法 反向传播神经网络 KD树 反距离加权 后处理

2025

强激光与粒子束
中国工程物理研究院 中国核学会 四川核学会

强激光与粒子束

北大核心
影响因子:1.008
ISSN:1001-4322
年,卷(期):2025.37(1)