首页|基于MonoRTM模型的微波辐射计反演方法研究

基于MonoRTM模型的微波辐射计反演方法研究

扫码查看
基于辐射传输模型MonoRTM计算天空亮温度,使用多元线性统计回归方法和BP神经网络方法分别对大气温度和水汽密度廓线进行了反演,检验并分析了两种方法的反演精度.结果表明,多元线性回归方法反演的温度偏差总体不大于6K,反演的水汽密度偏差小于4 g/m3;神经网络方法反演的温度偏差小于2K,反演的水汽密度误差总体不大于2 g/m3.与探空数据的对比表明,对于大气温度和水汽密度反演,BP神经网络方法的反演结果都要比多元线性回归方法的反演结果更接近探空资料值.
Study on retrieval methods with MonoRTM for microwave radiometer measurements
This paper focuses on calculating brightness temperature based on monochromatic radiative transfer model MonoRTM, retrieving atmosphere temperature and water vapor density profiles by multiple linear regression and the BP neural network method, as well as comparing and analyzing retrieval accuracies of these two methods.The results show that the deviation of temperature profiles retrieved by multiple linear regression method is no more than 6 K and that of retrieved water vapor density profiles is less than 4 g/m3 on the whole, while the deviation of retrieved temperature using the BP neural network method is less than 2 K, and that of retrieved water vapor density is generally lower than 2 g/m3.Compared to the radiosonded data, the retrieval results of temperature and water vapor density from BP neural network method are better than those from multiple linear regression method.

Temperature and water vapor density profileThe monochromatic radiative transfer model MonoRTMMultiple linear regressionBP neural network

黄兴友、张曦、冷亮、李峰、樊雅文

展开 >

南京信息工程大学大气物理与大气环境重点开放实验室,南京210044

中国气象局武汉暴雨研究所暴雨监测预警湖北省重点实验室,武汉430074

中国气象局气象探测中心,北京100081

大气温湿廓线 MonoRTM辐射传输模型 多元线性回归 BP神经网络

公益性行业(气象)科研专项公益性行业(气象)科研专项

GYHY200806015GYHY201106002

2013

气象科学
江苏省气象学会

气象科学

CSTPCDCSCD北大核心
影响因子:0.925
ISSN:1009-0827
年,卷(期):2013.33(2)
  • 22
  • 9