首页|基于多尺度分解的LSTM-ARIMA锂电池寿命预测

基于多尺度分解的LSTM-ARIMA锂电池寿命预测

扫码查看
锂电池剩余使用寿命(Remaining useful life,RUL)预测是锂电池研究的一个重要方向,通过对RUL的准确预测,可以更好地管理和维护电池,延长电池使用寿命。为了能够准确预测锂电池的RUL,提出了一种集合变分模态分解(Variational mode decomposition,VMD)、长短时记忆网络(Long short-term memory,LSTM)和自回归移动平均模型(Autoregressive integrated moving average,ARIMA)相结合的锂电池RUL预测模型。该模型首先采用VMD算法将NASA锂电池数据集中的容量数据分解为多个高频分量和低频分量,以此减少容量数据中的噪声干扰,然后针对各个分量的特点,分别利用LSTM和ARIMA对分解所得的高频分量和低频分量建立预测子模型,最后将各个子模型的预测值进行叠加重构得到锂电池的RUL结果。实验结果表明VMD-LSTM-ARIMA预测模型相比于其他预测模型,该模型具有较好的锂电池RUL预测能力。并在CALCE锂电池数据集上进行了泛化性实验,结果表明该模型适用于不同电池RUL预测任务。
LSTM-ARIMA Model with Multiscale Decomposition for Life Prediction of Lithium-ion Battery
The prediction of remaining useful life(RUL)of lithium-ion batteries is an important research direction in battery technology.Through accurate prediction of RUL,batteries can be better managed and maintained to extend their lifespan.To achieve accurate RUL prediction of lithium-ion batteries,a model which combines variational mode decomposi-tion(VMD)with long short-term memory(LSTM)and autoregressive integrated moving average(ARIMA)was proposed.Firstly,VMD algorithm was used to decompose the capacity data from the NASA lithium-ion battery dataset into multiple high-frequency and low-frequency components in order to reduce the noise interference in the capacity data.Then,with re-gard to the characteristics of each component,LSTM and ARIMA were used to establish separate sub-models to predict the high-frequency and low-frequency components,respectively.Finally,the predicted values of each sub-model were com-bined and reconstructed to obtain the RUL result of the lithium-ion battery.Experimental results showed that the VMD-LSTM-ARIMA prediction model had better RUL prediction capability compared with other prediction models.Furthermore,generalization experiments on the CALCE lithium-ion battery dataset showed that the model was applicable to different battery RUL prediction tasks.

lithium-ion batteryremaining life predictionvariational mode decompositionlong short-term memory neural networkARIMA

张意、汤文兵、张斌

展开 >

安徽理工大学计算机科学与工程学院,安徽淮南 232001

中国科学院物理研究所清洁能源中心,江苏固芯科技有限公司,江苏常州 213300

锂电池 剩余寿命预测 变分模态分解 长短时记忆网络 自回归移动平均模型

国家自然科学基金

22239003

2024

海南热带海洋学院学报
琼州学院

海南热带海洋学院学报

CHSSCD
影响因子:0.358
ISSN:1008-6722
年,卷(期):2024.31(2)
  • 12