首页|基于PredRNN++模型对南海中尺度涡旋的预测研究

基于PredRNN++模型对南海中尺度涡旋的预测研究

扫码查看
基于26年的海表面高度异常、海表面风速异常、海表面温度异常资料,利用时空序列预测模型PredRNN++,本文预报1~28d时效的南海中尺度涡旋轨迹和南海西部偶极子活动.结果表明,PredRNN++模型能从整体上考虑整个南海区域时空演变特征和环境风场、温度场的作用,在短期(1~2周)、中期(3~4周)预报上具有良好的性能.该模型具备一定预报涡旋产生、消亡的能力,且能将涡旋轨迹4周预报误差控制在42.1km,对于生命时长小于100d的涡旋生命中期的位置、振幅预报误差小.此外模型在8-11月份的月平均、4天平均下的任意时间点和任意预报时效下均能较好地追踪到偶极子结构的演变、强度变化,偶极子涡旋相关属性预报误差最小且存在年际、类型差异,2017年涡旋1~4周振幅位置、预报、半径误差最小,分别为40~60km、3~5cm、20~40km,且气旋涡位置预报效果优于反气旋涡.
Prediction of mesoscale eddies in the South China Sea based on the PredRNN++model
Based on 26 years of data on sea level anomalies,sea surface wind speed anomalies,and sea surface temperature anomalies,using the spatiotemporal series prediction model PredRNN++,this paper predicts the trajectory of mesoscale eddies in the South China Sea and dipole activity in the western South China Sea over a period of 1 to 28 days.The results indicate that the PredRNN++model can comprehensively consider the spatiotemporal evolution characteristics of the entire South China Sea region and the role of environmental wind and temperature fiields,and has good performance in short-term(1~2weeks)and medium-term(3~4weeks)forecasting.This model has the ability to predict the generation and disappearance of eddies to a certain extent,and can control the 4-cycle prediction error of eddy trajectories to 42.1 km.For eddies with a lifespan of less than 100 days,the mid-term position and amplitude prediction error are small.In addition,the model can better track the evolution and intensity change of dipole structure at any time point under the monthly average,4-day average and any forecast time effect in August-November.The prediction error of dipole eddy related attributes is the smallest and there are interannual and type differences.In 2017,the amplitude position,prediction and radius error of eddy 1-4 cycles are the smallest,which are 40~60 km,3~5 cm and 20~40 km respectively,and the prediction effect of cyclone position is better than that of anticyclone.

mesoscale eddiesdipole off eastern Vietnamocean forecastdeep learning

赵杰、林延奖、刘燃、杜榕

展开 >

复旦大学大气与海洋科学系,上海 200438

中尺度涡旋 越南偶极子 海洋预报 深度学习

2024

热带海洋学报
中国科学院南海海洋研究所

热带海洋学报

CSTPCD北大核心
影响因子:0.513
ISSN:1009-5470
年,卷(期):2024.43(1)
  • 35