首页|卷积神经网络方法在岛礁类海啸波水动力特性演变的应用

卷积神经网络方法在岛礁类海啸波水动力特性演变的应用

扫码查看
海啸是严重的海洋灾害,准确的海啸预测对于海洋工程和人民生命财产安全具有重要意义.本文以一维卷积神经网络(1-dimensional convolutional neural network,CONV1D)为基础,构建岛礁地形的类海啸波水动力特性演变模型.通过输入类海啸波波高时程曲线的观测值,得到岛礁指定地点的水位淹没时程曲线,实现时间序列到时间序列的预测,进行海洋灾害的实时预报,提前布置防御措施以达到减小损失的目的.结果显示,预测一组样本所需时间少于一秒,相对于传统的地震海啸预警系统,深度学习方法所需计算资源较少,计算速度更快.对类海啸波到达时间预测的平均相对误差为 0.71%,最大水位高度预测的平均相对误差为 6.99%,CONV1D得到的岛礁地形类海啸波水动力特性与数值结果吻合较好.
Application of convolutional neural network methods in the evolution of hydrodynamic characteristics of tsunamis like-wave over fringing reef
Tsunami is a serious marine disaster,and accurate tsunami prediction is of great significance to marine engineering and the safety of people's lives and property.In this paper,based on 1-dimensional convolutional neural network(CONV1D),the evolution model of tsunami-like hydrodynamic characteristics of reef topography is constructed.By inputting observed values of wave heights resembling tsunami waves,the water inundation time series curves for specified locations on islands and reefs are generated.This achieves a prediction from one time series to another,serving the purpose of marine disaster prevention.The results indicate that the average relative error in predicting the arrival time of tsunami-like waves is 0.71%,and the average relative error in predicting maximum water levels is 6.99%.The hydrodynamic characteristics of island and reef terrains resembling tsunami waves obtained through CONV1D exhibit a strong alignment with numerical results.

deep learningconvolutional neural networktsunami predictionhydrodynamic characteristicstimes series

高榕泽、屈科、任兴月、王旭

展开 >

长沙理工大学水利与环境工程学院,湖南长沙 410114

洞庭湖水环境治理与生态修复湖南省重点实验室,湖南 长沙 410114

水沙科学与水灾害防治湖南省重点实验室,湖南长沙 410114

海南大学土木建筑工程学院,海南海口 570228

展开 >

深度学习 卷积神经网络 海啸预测 水动力特性 时间序列

国家重点研发计划课题国家自然科学基金重点项目湖南省自然科学基金项目

2022YFC3103601518390022021JJ20043

2024

热带海洋学报
中国科学院南海海洋研究所

热带海洋学报

CSTPCD北大核心
影响因子:0.513
ISSN:1009-5470
年,卷(期):2024.43(4)
  • 9