首页|融合MIC与Res-LSTM模型的有效波高预测

融合MIC与Res-LSTM模型的有效波高预测

扫码查看
有效波高(significant wave height,SWH)的预测在海洋运输和海上活动方面发挥着重要作用.基于中国阳江海陵岛近岸实测数据,提出一种融合最大信息系数(maximal information coefficient,MIC)、残差网络(residual network,ResNet)和长短期记忆网络(long short-term memory networks,LSTM)的预测模型.首先,采用MIC算法从数据集中筛选出与预测指标相关性高的参数作为模型的输入;然后将ResNet引入LSTM中,构建Res-LSTM预测模型;最后选择相关系数(r-squared,R2)、均方根差(root mean squared error,RMSE)、平均绝对误差(mean absolute error,MAE)和平均绝对百分比误差(mean absolute percentage error,MAPE)来评价预测结果.同时,对比了XGBoost(extreme gradient boosting)、SVR(support vector regression)和LSTM网络的预测效果.结果表明,MIC-Res-LSTM模型能够提高短时有效波高预测值的精度.
Fusing MIC and Res-LSTM models for significant wave height prediction
The prediction of significant wave height(SWH)plays an important role in marine transportation and maritime activities.Based on the near-shore real measurement data of the Hailing Island,Yangjiang,China,a network model integrating the maximum information coefficient algorithm(MIC),residual network(ResNet)and long and short-term memory network(LSTM)is proposed.Firstly,the MIC algorithm was used to screen out the parameters with high correlation with the target predictors from the dataset as the input of the model.Then the residual network was introduced into the LSTM to construct the Res-LSTM prediction model.Finally,the r-squared(R2),root mean square error(RMSE),mean absolute error(MAE)and mean absolute percentage error(MAPE)were selected to evaluate the prediction results.Meanwhile,the prediction results of extreme gradient boosting(XGBoost)network,support vector regression(SVR)network and LSTM network were compared.The results demonstrate that the MIC-Res-LSTM model can improve the accuracy of the short-time significant wave height prediction values.

wave height predictionmaximum information coefficientresidual networklong and short-term memory networksupport vector regression

朱道恒、李彦、李志强、刘润

展开 >

电子与信息工程学院,广东海洋大学,广东湛江 524088

大数据与信息工程学院,贵州大学,贵州贵阳 550025

化学与环境学院,广东海洋大学,广东 湛江 524088

波高预测 最大信息系数 残差网络 长短期记忆网络 支持向量回归

国家自然科学基金项目广东海洋大学科研启动经费项目

42176167060302112317

2024

热带海洋学报
中国科学院南海海洋研究所

热带海洋学报

CSTPCD北大核心
影响因子:0.513
ISSN:1009-5470
年,卷(期):2024.43(4)
  • 3