首页|基于CPA-FM-MEM磨粒分析的缸套-活塞系统健康状态评估

基于CPA-FM-MEM磨粒分析的缸套-活塞系统健康状态评估

扫码查看
以内燃机典型摩擦副缸套-活塞系统为研究对象,设计和搭建内燃机缸套-活塞系统状态监测试验台.针对传统最大熵方法分析润滑油中磨粒监测数据存在的缺点,提出改进的分数矩最大熵方法(Fractional Moment Maxi-mum Entropy Method,FM-MEM),并结合食肉植物优化算法(Carnivorous Plant Algorithm,CPA)对关键参数进行寻优求解.对润滑油中磨粒监测数据进行阈值划分,实现内燃机健康状态评估,然后将理论与试验相结合,以在线磨粒监测为主,从润滑油磨粒、理化指标以及表面形貌 3 个方面对内燃机缸套-活塞系统的运行状态进行监测,分析低速工况下缸套-活塞系统各个时间段的磨损健康状态及磨粒含量变化趋势,通过内燃机整机的在线磨粒监测试验,证明该方法可实现对内燃机缸套-活塞系统的实时状态监测.
Health Status Assessment of Cylinder Liner-piston System Based on CPA-FM-MEM Wear Debris Analysis
Taking the typical friction pair cylinder liner-piston system of internal combustion engine as the research ob-ject,the condition monitoring test bench of cylinder liner-piston system of internal combustion engine was designed and built.Aiming at the shortcomings of the traditional maximum entropy method in analyzing the monitoring data of wear debris in oil,an improved fractional moment maximum entropy method(FM-MEM)was proposed,and the key parameters were optimized by combining the carnivorous plant algorithm(CPA).The threshold division of the monitoring data of wear deb-ris in oil was carried out to evaluate the health status of the internal combustion engine.Combining theory with experi-ments,with online wear debris monitoring as the main focus,the running state of the cylinder liner-piston system of the in-ternal combustion engine was monitored from three aspects,wear debris in oil,physical and chemical indexes,and surface morphology.The wear health status and the change trend of wear debris concentration in each time period of the cylinder liner-piston system under low speed condition were analyzed.Through the on-line wear debris monitoring test of the inter-nal combustion engine,it is proved that this method can realize the on-line real-time condition monitoring of the cylinder liner-piston system of the internal combustion engine.

wear debrisinternal combustion enginecylinder liner piston systemfractional moment maximum entropycarnivorous plant algorithmhealth status assessment

丁乐天、曹蔚、吴佳军、严阳、吴剑锋、苏睿、孙靓

展开 >

西安工业大学机电工程学院,陕西西安 710021

精密与超精密加工及测量国家地方联合工程研究中心(西安工业大学),陕西西安 710021

陕西师范大学教师发展学院,陕西教师发展研究院,陕西西安 710021

磨粒 内燃机 缸套-活塞系统 分数矩最大熵 食肉植物优化算法 健康状态评估

国家自然科学基金项目陕西省重点研发计划-国际科技合作计划重点项目西安工业大学优秀学位论文培育基金项目陕西教师发展研究计划项目

521751132023-GHZD-36YS202304SJS2022ZY015

2024

润滑与密封
中国机械工程学会 广州机械科学研究院有限公司

润滑与密封

CSTPCD北大核心
影响因子:0.478
ISSN:0254-0150
年,卷(期):2024.49(9)