首页|铸造增压压力对汽车用AlSi9Mg铝合金组织和力学性能的影响

铸造增压压力对汽车用AlSi9Mg铝合金组织和力学性能的影响

扫码查看
通过改变低压铸造过程中不同增压压力来研究其对AlSi9Mg合金显微组织与力学性能的影响.结果表明,在高增压压力制备的AlSi9Mg合金样品具有更加致密的显微组织及更接近球形的共晶Si颗粒.同时,由于具有更好的填充能力,高增压压力下合金的气孔缺陷大大减少,合金具有更优异的力学性能.在 90、150、210 kPa3 种不同级别的增压压力下,晶粒尺寸呈逐渐减小的趋势,对应的合金晶粒尺寸和二次枝晶臂间距分别为 246、197、149 μm,44.9、37.3、31.1 μm;3 种增压压力对应的密度和孔隙率分别为 2.656、2.659、2.674 g/cm3,0.96%、0.79%、0.38%;AlSi9Mg合金的抗拉强度、屈服强度和伸长率分别为 238.76、174.68 MPa和 3.14%;252.43、177.47 MPa和 4.61%;256.10、178.81 MPa和 6.85%,分别提高了 7.26%、2.36%、118.15%.
Effects of Casting Pressurization Pressure on Microstructure and Mechanical Properties of AlSi9Mg Aluminum Alloy for Automobile
The effects different pressurization pressures on the microstructure and mechanical properties of AlSi9Mg alloy were studied by changing the pressure during low pressure casting.The results show that the AlSi9Mg alloy samples prepared at high pressurization pressure have a denser microstructure and more spherical eutectic Si particles.At the same time,due to the better filling ability,the pore defects of the alloy under high pressurization pressure are greatly reduced,and the alloy has more excellent mechanical properties.At three different levels of pressurization pressure of 90,150,and 210 kPa,the grain size gradually decreases,and the grain size and secondary dendrite arm spacing of the corresponding alloys are 246,197,149 μm and 44.9,37.3,31.1 μm,respectively.The density and porosity corresponding to the three pressurization pressures are 2.656,2.659,2.674 g/cm3 and 0.96%,0.79%,0.38%,respectively.The tensile strength,yield strength and elongation of the AlSi9Mg alloy are 238.76,174.68 MPa and 3.14%;252.43,177.47 MPa and 4.61%;256.10,178.81 MPa and 6.85%,respectively,increasing by 7.26%,2.36%and 118.15%,respectively.

AlSi9Mg aluminum alloylow-pressure die castingpressurization pressuremicrostructuremechanical properties

王平、张宏、李春芾、文金

展开 >

内蒙古交通职业技术学院,内蒙古 赤峰 024005

内蒙古大学 交通学院,内蒙古 呼和浩特 010070

内蒙古科技大学 材料与冶金学院,内蒙古 包头 014010

AlSi9Mg合金 低压铸造 增压压力 显微组织 力学性能

内蒙古自治区科技厅自然科学研究项目(2019)内蒙古自治区教育科学规划课题(2021)

2019MS07021NZJGH2021126

2024

热加工工艺
中国船舶重工集团公司热加工工艺研究所 中国造船工程学会船舶材料学术委员会

热加工工艺

CSTPCD北大核心
影响因子:0.55
ISSN:1001-3814
年,卷(期):2024.53(7)
  • 9