首页|奥氏体转变温度以上变形时应变速率对低碳钢动态软化行为的影响

奥氏体转变温度以上变形时应变速率对低碳钢动态软化行为的影响

扫码查看
利用Gleeble-1500 热模拟试验机,将一低碳微合金钢在Ac3 温度以上(950℃)进行了 4 种不同的应变速率(10、7、3、1 s-1)的压缩变形,然后淬火处理.对高温变形的应力应变曲线用双微分法进行变换,发现材料变形过程中主要有两种软化机制,分别为动态相变和动态再结晶,随变形速率的增加,材料发生软化的两个临界应力呈线性升高的趋势;两个临界应变则随应变速率变化不大.用金相显微镜观察观察了材料淬火后的金相组织,发现材料内的Widmanst-ätten铁素体板条宽度随应变速率的增加而逐渐变细,多边形铁素体的数目随应变速率的增加而增加;Widmanstätten铁素体板条一般为平行或垂直关系,而垂直关系的Widmanstätten铁素体板条并不呈现严格的直角,而是偏离一定的角度.
Effect of Strain Rate on Dynamic Softening Behavior of Low Carbon Steel during Deformation above Austenite Transformation Temperature
Using a Gleeble-1500 thermal simulation testing machine,a low carbon microalloyed steel was subjected to compression deformation at 4 different strain rates(10,7,3,1s-1)above Ac3 temperature(950℃),and then quenched.The stress-strain curve of high temperature deformation was transformed by the double differential method,and it is found that there are two main softening mechanisms in the process of material deformation,namely dynamic phase transformation and dynamic recrystallization.With the increase of deformation rate,the two critical stresses for material softening increase linearly.The two critical strains do not change much with the change of the strain rate.The metallographic structure of the material after quenching was observed with a metallographic microscope.It is found that the width of the Widmanst ätten ferrite laths within the material decreases with strain rate increasing and the number of polygonal ferrites increases with strain rate increasing;Widmanstätten ferritic laths are generally in a parallel or perpendicular relationship,while Widmanstätten ferritic laths in perpendicular relation do not present a strictly right angle,but rather deviate from a certain angle.

low carbon steeldynamic recrystallizationdynamic transformationdouble differential methodstrain rate

刘永超、王少强、王鹏程、桑学科、丁宁、刘珑、许慧霞、郭卫民

展开 >

金雷科技股份公司,山东 济南 271105

山东省材料失效分析与安全评估工程技术中心 山东省分析测试中心齐鲁工业大学(山东省科学院),山东 济南 250014

低碳钢 动态再结晶 动态相变 双微分法 应变速率

山东省自然科学基金面上项目

ZR2021ME158

2024

热加工工艺
中国船舶重工集团公司热加工工艺研究所 中国造船工程学会船舶材料学术委员会

热加工工艺

CSTPCD北大核心
影响因子:0.55
ISSN:1001-3814
年,卷(期):2024.53(11)