首页|铜及黄铜与模具钢界面稳态接触换热行为的研究

铜及黄铜与模具钢界面稳态接触换热行为的研究

扫码查看
接触换热系数直接决定金属热加工过程的温度分布,进而影响零件的微观组织及使役性能.本文采用自主开发的稳态接触换热设备和测量系统,系统研究了纯铜及H62 黄铜与H13 模具钢在接触面温度为 200~600℃、压力为 1.56~12.56 MPa下的接触换热行为.结果表明,载荷加载的历程对接触换热系数有较大影响,相比于从低载荷加载到目标压力时,从高载荷卸载到同一目标压力测得的接触换热系数更高;在相同加载历程下,接触换热系数随着界面温差的升高而增加,且界面温度高于 400℃时接触换热系数增速变快;接触换热系数与压力呈幂指数关系增长,随着压力的增大,接触换热系数增长逐渐变得缓慢;在相同条件下,黄铜/H13 传热时的温度梯度更大,导致黄铜/H13 的接触换热系数更大.
Study on Steady-State Interfacial Heat Transfer Behavior between Copper/Brass and Die Steel
The contact heat transfer coefficient directly determines the temperature distribution of the metal hot working process,which further affects the microstructure and service performance of the parts.Using the self-developed steady-state contact heat transfer equipment and measurement system,the contact heat transfer behavior of pure copper,H62 brass and H13 die steel at the contact surface temperature of 200-600℃and the pressure range of 1.56-12.56 MPa was systematically studied.The results show that the loading history has a great influence on the contact heat transfer coefficient.Compared with loading from a low load to a target pressure,the contact heat transfer coefficient measured from a high load unloading to the same target pressure is higher.Under the same loading history,the contact heat transfer coefficient increases with the increase of the interface temperature difference,and the contact heat transfer coefficient increases rapidly when the interface temperature is higher than 400℃;the contact heat transfer coefficient increases exponentially with the pressure,and the increase of the contact heat transfer coefficient gradually becomes slower as the pressure increases;under the same conditions,the temperature gradient during heat transfer of brass/H13 is larger,resulting in a larger contact heat transfer coefficient of brass/H13.

copperbrasshot working technologyinterfacial heat transfer coefficientinterface temperature differencepressure

国林磊、张驰、张立文、陈仁朝、运新兵、邵志文

展开 >

大连理工大学 材料科学与工程学院,辽宁 大连 116028

大连交通大学 连续挤压教育部工程研究中心,辽宁大连 116028

中国兵器科学研究院宁波分院,浙江 宁波 315103

黄铜 热加工工艺 接触换热系数 界面温差 压力

国家重点研发计划资助项目

2019YFA0705300

2024

热加工工艺
中国船舶重工集团公司热加工工艺研究所 中国造船工程学会船舶材料学术委员会

热加工工艺

CSTPCD北大核心
影响因子:0.55
ISSN:1001-3814
年,卷(期):2024.53(15)
  • 4