首页|基于特征加权融合的热轧带钢表面缺陷识别

基于特征加权融合的热轧带钢表面缺陷识别

扫码查看
带钢是现代制造业的重要原材料,其表面缺陷严重影响了最终产品的性能.为实现热轧带钢表面缺陷的准确识别分类,本文提出了一种基于特征加权融合的带钢表面缺陷识别方法.针对 6 种类间差异小、类内差异大的热轧带钢表面缺陷,分别从特征提取、特征融合、特征降维三个方面改进机器学习算法,获取低维度、高信息度的缺陷特征.通过支持向量机(SVM)训练特征,实现缺陷分类.实验结果表明,融合特征较单一特征具有更强的表征能力,本文方法的缺陷识别率达到了 98.33%,具有较强的实用性.
Surface Defect Recognition of Hot-rolled Strip Steel Based on Feature Weighted Fusion
Strip steel is an important raw material in modern manufacturing,and its surface defects seriously affect the performance of the final product.In order to achieve accurate recognition and classification of surface defects in hot rolled strip steel,a method for identifying surface defects in strip steel based on feature weighted fusion was proposed.For 6 types of surface defects of hot rolled strip steel with small differences and large intra-class differences,machine learning algorithms were improved from three aspects of feature extraction,feature fusion and feature dimensionality reduction to obtain low dimensional and high information defect features.Features were trained through Support Vector Machine(SVM)to achieve defect classification.The results show that fused features have stronger representation ability than single feature,and the defect recognition rate of the method reaches 98.33%,indicating strong practicality.

metal strip steeldefect identificationimage processingfeature fusionprincipal component analysis

周亚罗、张健、刘文广、张瑞成

展开 >

华北理工大学 电气工程学院,河北 唐山 063210

首钢京唐钢铁联合有限责任公司,河北 唐山 063200

金属带钢 缺陷识别 图像处理 特征融合 主成分分析法

2024

热加工工艺
中国船舶重工集团公司热加工工艺研究所 中国造船工程学会船舶材料学术委员会

热加工工艺

CSTPCD北大核心
影响因子:0.55
ISSN:1001-3814
年,卷(期):2024.53(23)