首页|改进制冷成本的冷链物流低碳车辆路径优化研究——基于ALNS遗传算法

改进制冷成本的冷链物流低碳车辆路径优化研究——基于ALNS遗传算法

扫码查看
针对冷链物流车辆配送制冷成本计算难、碳排放量大,存在链式病毒感染风险的问题,首先提出冷链物流车辆制冷机组单位时间油耗因子,结合实际分四阶段计算制冷成本,并在货损成本函数中引入病毒感染风险货损因子.基于此,建立以配送总成本最小为目标的冷链车辆低碳路径优化数学模型,设计基于自适应大领域搜索的遗传算法(ALNSGA)求解.通过实例与仿真实验以及算法对比分析,验证了提出的模型的合理性与算法的有效性.
Cold Chain Logistics Low-carbon Vehicle Routing Optimization with Improved Refrigeration Cost:Based on Adaptive Large Neighborhood Search Genetic Algorithm
Aiming at the problem of the difficulties of calculating refrigeration costs,high carbon emissions,and the risk of chain virus infection in cold chain logistics vehicle distribution,this paper first puts forward the cold chain logistics vehicle refrigeration unit time fuel consumption factor,combined with the practice,to calculate the refrigeration cost from four stages.Then,the virus infection risk cargo loss factor is introduced into the cargo loss cost function.Based on it,the mathematical model of low carbon vehicle routing optimization in cold chain logistics to minimize the total distribution cost is established,and a genetic algorithm based on adaptive large neighborhood search(ALNSGA)is designed to solve it.The algorithms are compared and analyzed through real examples and simulation experiments.The results verify the effectiveness of the model and the algorithm.

vehicle routing optimizationcold chain logisticsrisk of the epidemiclow carbonadaptive large neighbor-hood search

徐泽水、温晶、王新鑫、刘娜娜

展开 >

四川大学 商学院,成都 610065

重庆工商大学 工商管理学院,重庆 400067

车辆路径优化 冷链物流 病毒感染风险 低碳 自适应大领域搜索

国家自然科学基金国家自然科学基金四川省自然科学基金

72271173720711352022NSFSC0942

2024

软科学
四川省科学技术促进发展研究中心

软科学

CSTPCDCSSCICHSSCD北大核心
影响因子:1.333
ISSN:1001-8409
年,卷(期):2024.38(1)
  • 14