首页|基于贝叶斯网络的PPP项目风险预测

基于贝叶斯网络的PPP项目风险预测

扫码查看
基于影响图的基本原理和PPP项目风险的相关研究,识别了 PPP项目风险传递链.然后使用142份调查问卷数据,运用期望最大化(EM)算法和累积分布函数(CDF)算法,构建并验证了 PPP项目风险贝叶斯网络模型.结果显示,该模型对投资收益、项目功能、溢出效应3个项目目标预测的准确性分别为77.81%、73.40%和79.15%.运用其学习、推理功能,推导出PPP项目的关键风险源的类型是项目因素和政府因素,影响投资收益的关键风险事件是使用量不足风险和施工成本超支风险.从某水务PPP项目的案例分析来看,模型在PPP项目投资及风险管理中具备一定应用价值.
The Risk Prediction of the PPP Project in China Based on the Bayesian Network
Based on the influence diagram and the related research on PPP project risk,the PPP project risk transmission re-lationship is identified.Then,142 questionnaires were used to obtain the data,and the expectation maximization(EM)algo-rithm and cumulative distribution function(CDF)algorithm were used to construct and verify the PPP project risk Bayesian network model.The results show that the prediction accuracy of this model is 77.81%,73.40%and 79.15%for invest-ment return,project function,and spillover effect,respectively.Using its learning and reasoning function,it is deduced that the key risk sources of PPP projects are project and government aspects,and the key risk events affecting investment returns are insufficient use and construction cost overrun risk.From the case analysis of a water PPP project,this model provides value for PPP project investment and risk management.

Bayesian networkPPP projectrisk prediction

孙慧、王煊昂

展开 >

天津大学管理与经济学部,天津 300072

贝叶斯网络 PPP项目 风险预测

国家自然科学基金

71772136

2024

软科学
四川省科学技术促进发展研究中心

软科学

CSTPCDCSSCICHSSCD北大核心
影响因子:1.333
ISSN:1001-8409
年,卷(期):2024.38(3)
  • 17