首页|基于LV-DBSCAN算法的大坝安全监测数据异常检测

基于LV-DBSCAN算法的大坝安全监测数据异常检测

扫码查看
大坝安全监测数据原始序列中常存在异常测值,极大影响了大坝安全监测资料分析的可靠性和准确性.为此,在分析异常值特性及传统异常检测方法优缺点的基础上,分别从局部与整体角度研究监测数据异常检测方法.首先针对多重局部异常系数法要求数据序列较长且数据等时间间距等缺陷,提出了局部变化异常系数法(LV)及局部方法与整体方法协同判别策略;进一步引入密度聚类算法(DBSCAN),提出了兼顾数据整体与局部特性的LV-DBSCAN异常检测方法.以某混凝土重力坝两垂线测点顺流向位移监测数据为实例,对比分析了不同方法在不同类型数据集上的检测精度.研究结果表明,所提LV-DBSCAN方法适用性更广,准确率更高,误判率更低.
Detection of abnormal values in dam safety monitoring data based on LV-DBSCAN algorithm
There are often abnormal measurements in the original observation sequence of dam safety monitoring,which greatly affects the reliability and accuracy of dam safety monitoring data analysis.Therefore,based on the analysis of the abnormal values characteristics and the advantages and disadvantages of traditional anomaly detection methods,this paper studied the detection methods of abnormal values in monitoring data from the local and overall perspectives.Firstly,aiming at the defects of multiple lo-cal anomaly coefficient methods requiring data with long sequence and equal time interval,a local change anomaly coefficient method(LV)and a collaborative discrimination strategy of local method and overall method were proposed.Furthermore,the densi-ty clustering algorithm(DBSCAN)was introduced,and a LV-DBSCAN anomaly detection method considering the overall and lo-cal characteristics of the data was proposed.Taking the downstream displacement monitoring data of two vertical measuring points of a concrete gravity dam as an example,the detection accuracy of different methods on different types of data sets was compared and analyzed.The results showed that the LV-DBSCAN method proposed in this paper has wider applicability,higher accuracy and lower misjudgment rate.

dam safety monitoringabnormal valuelocal change anomaly coefficient methoddensity clustering algorithmcon-fidence degree

戴领、李少林、刘光彪、纪传波、段国学

展开 >

长江设计集团有限公司,湖北 武汉 430010

长江勘测规划设计研究有限责任公司,湖北 武汉 430010

大坝安全监测 异常值 局部变化异常系数法(LV) 密度聚类算法(DBSCAN) 置信度

湖北省博士后创新实践岗位项目长江勘测规划设计研究有限责任公司自主创新项目长江勘测规划设计研究有限责任公司自主创新项目

2022CXGW003CX2019Z18CX2020Z46

2024

人民长江
水利部长江水利委员会

人民长江

CSTPCD北大核心
影响因子:0.451
ISSN:1001-4179
年,卷(期):2024.55(1)
  • 2
  • 15