首页|基于自校正原型网络的泥石流灾害易发性评价——以怒江州为例

基于自校正原型网络的泥石流灾害易发性评价——以怒江州为例

扫码查看
为解决泥石流易发性评价中因子选择不一致造成的评价差异问题,以及目前神经网络不能有效提取泥石流特征以提升易发性评价正确率问题,提出了基于自校正原型网络的泥石流灾害易发性评价方法.以沟谷为评价单元,提取沟谷的DEM、高分一号和Google Earth遥感影像作为训练数据,引入注意力机制和空洞空间卷积池化金字塔结构构建原型网络的特征提取器,并使用自校正的方法优化原型网络的计算,将未发生泥石流的沟谷图像输入改进后的模型,计算其泥石流灾害易发性指数从而得出泥石流评价等级.运用该模型对怒江州的沟谷进行评价,并与历史灾害数据进行对比.结果表明:模型分类正确率达到86.32%,评价结果中的易发区和高易发区均与历史泥石流沟谷的空间分布较为吻合;相比于传统评价方法,该方法能够较好地自动学习遥感影像中泥石流特征,并实现灾害区域的快速识别与评价.研究成果可为泥石流灾害的研究提供新的思路.
Assessment of debris flow susceptibility based on self-calibration prototype network:case of Nujiang Prefecture,Yunnan Province
To address the inconsistency due to different factor selection in the assessment of debris flow susceptibility,and the inadequate accuracy in susceptibility evaluation due to current neural networks inefficiently extracting debris flow features,we pro-posed a novel approach based on a self-calibration prototype network for debris flow susceptibility assessment.Taking the valley watershed as the evaluation unit,DEM data,high-resolution imagery from Gaofen 1,and Google Earth remote sensing images were extracted as training data.The prototype network's feature extractor was constructed with an attention mechanism and an at-rous space convolution pooling pyramid structure.Additionally,a self-calibration method was employed to optimize the prototype network's computation.Subsequently,non-debris flow valley images were inputted into the refined model,and the debris flow susceptibility index was computed to obtain the debris flow assessment level.We applied this model to evaluate valleys in the Nu-jiang Prefecture and compare the results with historical disaster data,showing a remarkable classification accuracy of 86.32%.The assessment outcomes of prone and high-prone areas closely aligned with the spatial distribution of historical debris flow val-leys.In comparison to traditional evaluation methods,this approach demonstrates superior capability in autonomously learning deb-ris flow features from remote sensing images and rapidly identifying and assessing disaster-prone regions.This methodology can provide a fresh perspective for advancing research on debris flow disasters by deep learning.

debris flowsusceptibility assessmentprototype networkfew-shot learningremote sensing imageNujiang Prefec-ture

韩俊、王保云、徐繁树

展开 >

云南师范大学 信息学院,云南 昆明 650500

云南师范大学 数学学院,云南 昆明 650500

云南省高校复杂系统建模及应用重点实验室,云南 昆明 650500

泥石流 易发性评价 原型网络 小样本学习 遥感影像 怒江州

国家自然科学基金项目

61966040

2024

人民长江
水利部长江水利委员会

人民长江

CSTPCD北大核心
影响因子:0.451
ISSN:1001-4179
年,卷(期):2024.55(3)
  • 36