首页|基于LSTM模型的时序InSAR地表形变预测

基于LSTM模型的时序InSAR地表形变预测

扫码查看
为了解长江沿江区域的地表形变状况及发展趋势,维护长江防洪安全和河势稳定,利用 2017 年 3 月至2022 年3 月期间覆盖长江南京段沿江区域的61 景Sentinel-1A影像,基于SBAS-InSAR技术获取了地面沉降监测结果,并基于LSTM长短期记忆神经网络模型对特征点未来变化趋势进行了预测.结果表明:① 与水准监测结果相比,长江南京段沿江区域SBAS-InSAR监测结果具有一定的准确性;研究区域地面年均形变速率在-31~19 mm/a,并形成4 个沉降漏斗.② LSTM模型对研究区域的形变预测值与SBAS-InSAR监测的期望值具有较高的一致性,两者最大绝对误差为3.28 mm;采用该方法对研究区域特征点的沉降趋势进行预测发现,未来2a特征点总体表现为缓慢下沉并趋于稳定的趋势.研究成果可为相关部门制定沿江地区保护及规划方案提供技术参考.
Time-series InSAR ground deformation prediction based on LSTM model
In order to analyze the deformation status and development trend along the Changjiang River,and to maintain flood control safety and river regime stability,SBAS-InSAR technology was utilized to monitor ground deformation with 61 Sentinel-1A images covering the Changjiang River riparian area of Nanjing reach from March 2017 to March 2022.Additionally,the long short-term memory neural network model(LSTM)was used to predict the future trend of feature points.The results revealed that:① Compared with the leveling monitoring results,the accuracy of SBAS-InSAR was verified.The average annual ground de-formation rate in the study area ranged from-31~19 mm/a,and four subsidence funnels were formed along the Changjiang Riv-er in Nanjing reach.② The deformation prediction values of LSTM model exhibited a high degree of consistency with the SBAS-InSAR results,with a maximum absolute error of 3.28 mm.Using LSTM to predict the subsidence trend of feature points in the study area,it is found that the overall trend in the next 2 years will involve slow subsidence and a tendency to stabilize.The results can provide technical reference for relevant departments formulating protection and planning plans for the Changjiang River ripari-an area.

ground settlementground deformation predictionSBAS-InSARLSTMNanjing CityChangjiang River Basin

陈媛媛、赵秉琨、王慧、郑加柱、高业何敏

展开 >

南京林业大学 土木工程学院,江苏 南京 210037

江苏省水利科学研究院,江苏 南京 210017

地面沉降 地表形变预测 SBAS-InSAR LSTM 南京市 长江流域

江苏省水利科技项目江苏省自然资源科技计划项目江苏省自然科学基金项目南京林业大学青年科技创新基金项目

20190012022011BK20180779CX2018015

2024

人民长江
水利部长江水利委员会

人民长江

CSTPCD北大核心
影响因子:0.451
ISSN:1001-4179
年,卷(期):2024.55(3)
  • 16