人民长江2024,Vol.55Issue(3) :146-152.DOI:10.16232/j.cnki.1001-4179.2024.03.020

基于LSTM模型的时序InSAR地表形变预测

Time-series InSAR ground deformation prediction based on LSTM model

陈媛媛 赵秉琨 王慧 郑加柱 高业何敏
人民长江2024,Vol.55Issue(3) :146-152.DOI:10.16232/j.cnki.1001-4179.2024.03.020

基于LSTM模型的时序InSAR地表形变预测

Time-series InSAR ground deformation prediction based on LSTM model

陈媛媛 1赵秉琨 1王慧 1郑加柱 1高业何敏2
扫码查看

作者信息

  • 1. 南京林业大学 土木工程学院,江苏 南京 210037
  • 2. 江苏省水利科学研究院,江苏 南京 210017
  • 折叠

摘要

为了解长江沿江区域的地表形变状况及发展趋势,维护长江防洪安全和河势稳定,利用 2017 年 3 月至2022 年3 月期间覆盖长江南京段沿江区域的61 景Sentinel-1A影像,基于SBAS-InSAR技术获取了地面沉降监测结果,并基于LSTM长短期记忆神经网络模型对特征点未来变化趋势进行了预测.结果表明:① 与水准监测结果相比,长江南京段沿江区域SBAS-InSAR监测结果具有一定的准确性;研究区域地面年均形变速率在-31~19 mm/a,并形成4 个沉降漏斗.② LSTM模型对研究区域的形变预测值与SBAS-InSAR监测的期望值具有较高的一致性,两者最大绝对误差为3.28 mm;采用该方法对研究区域特征点的沉降趋势进行预测发现,未来2a特征点总体表现为缓慢下沉并趋于稳定的趋势.研究成果可为相关部门制定沿江地区保护及规划方案提供技术参考.

Abstract

In order to analyze the deformation status and development trend along the Changjiang River,and to maintain flood control safety and river regime stability,SBAS-InSAR technology was utilized to monitor ground deformation with 61 Sentinel-1A images covering the Changjiang River riparian area of Nanjing reach from March 2017 to March 2022.Additionally,the long short-term memory neural network model(LSTM)was used to predict the future trend of feature points.The results revealed that:① Compared with the leveling monitoring results,the accuracy of SBAS-InSAR was verified.The average annual ground de-formation rate in the study area ranged from-31~19 mm/a,and four subsidence funnels were formed along the Changjiang Riv-er in Nanjing reach.② The deformation prediction values of LSTM model exhibited a high degree of consistency with the SBAS-InSAR results,with a maximum absolute error of 3.28 mm.Using LSTM to predict the subsidence trend of feature points in the study area,it is found that the overall trend in the next 2 years will involve slow subsidence and a tendency to stabilize.The results can provide technical reference for relevant departments formulating protection and planning plans for the Changjiang River ripari-an area.

关键词

地面沉降/地表形变预测/SBAS-InSAR/LSTM/南京市/长江流域

Key words

ground settlement/ground deformation prediction/SBAS-InSAR/LSTM/Nanjing City/Changjiang River Basin

引用本文复制引用

基金项目

江苏省水利科技项目(2019001)

江苏省自然资源科技计划项目(2022011)

江苏省自然科学基金项目(BK20180779)

南京林业大学青年科技创新基金项目(CX2018015)

出版年

2024
人民长江
水利部长江水利委员会

人民长江

CSTPCD北大核心
影响因子:0.451
ISSN:1001-4179
参考文献量16
段落导航相关论文