首页|基于CNN-OBIA的黄河源区水体提取及时空变化

基于CNN-OBIA的黄河源区水体提取及时空变化

扫码查看
准确识别水体信息是分析地表水时空动态变化的重要技术手段.针对目前各种长时序水体信息提取方法精度低的问题,基于Landsat遥感影像,选用1986~2022 年5484 景黄河源区遥感影像,分别运用卷积神经网络结合面向对象(CNN-OBIA)和多指数水体检测规则(MIWDR)两种方法提取了黄河源区的地表水体,并对两种方法的提取精度进行了对比分析.在此基础上,探究了1986~2022 年黄河源区水体信息的时空变化特征,并对其主要气候因素进行相关分析.结果表明:① CNN-OBIA的总体精度和 Kappa系数分别为 96.78%和0.93,MIWDR的总体精度和 Kappa系数分别为94.28%和0.88,总体而言,CNN-OBIA的提取精度高于MIWDR方法.CNN-OBIA的提取结果可以很好地保持水体边界完整性和有效去除山体阴影,可以较好地对细小河流进行提取.② 研究区水体总面积呈现出先减少(1986~2001 年)后增加(2001~2022 年)的变化趋势.③ 相关性分析表明,降水和气温与水体面积的变化均表现出显著正相关.
Water extraction of source regions of Yellow River and its spatiotemporal variation based on CNN-OBIA
Accurately identifying water features is a crucial technical means for analyzing the spatiotemporal changes of surface water.In response to the problem of low accuracy in various long-term water extraction methods,we utilized Landsat remote sens-ing imagery to select 5484 scenes of usable imagery from the Yellow River source regions spanning from 1986 to 2022.Two meth-ods,Convolutional Neural Networks(CNN)combined with Object-based Image Analysis(OBIA)and Multi-Index Water Detec-tion Rules(MIWDR),were utilized to extract surface water features in the Yellow River source area.The accuracy of the two methods was compared and analyzed.Subsequently,the spatiotemporal characteristics of water features in the Yellow River source area from 1986 to 2022 were explored,and correlation analysis was conducted to investigate the main climatic factors.The results revealed that:①CNN-OBIA achieved an overall accuracy of 96.78%and a Kappa coefficient of 0.93,while MIWDR achieved an overall accuracy of 94.28%and a Kappa coefficient of 0.88.Overall,CNN-OBIA exhibited higher extraction accuracy than the MIWDR method.CNN-OBIA results better preserved the integrity of water boundaries,effectively removed mountain shad-ows,and improved the accuracy of extracting smaller rivers.② Total water area of the study area showed a decreasing trend in 1986~2001,followed by an increasing trend in 2001~2022.③ Correlation analysis indicated a significant positive correlation between precipitation,temperature,and changes in water area.

water area extractionconvolutional neural networksobject-based image analysisdriving force analysissource regions of the Yellow River

陈伟、张秀霞、党星海、樊新成、李旺平、徐俊伟

展开 >

兰州理工大学 土木工程学院,甘肃 兰州 730050

兰州理工大学 甘肃省应急测绘工程研究中心,甘肃兰州 730000

兰州理工大学建筑勘察设计院有限责任公司,甘肃 兰州 730050

水体面积提取 卷积神经网络 面向对象 驱动力分析 黄河源区

甘肃省教育厅青年博士基金甘肃省自然科学基金

2022QB-05222JR5RA247

2024

人民长江
水利部长江水利委员会

人民长江

CSTPCD北大核心
影响因子:0.451
ISSN:1001-4179
年,卷(期):2024.55(4)
  • 31