首页|大坝安全监测数据异常识别模型簇研究

大坝安全监测数据异常识别模型簇研究

扫码查看
监测数据异常识别是大坝运行安全在线监测的前提和基础.单一识别方法难以实现高效准确识别,而RREW模型对规律不佳与单台阶数据序列容易漏判且计算效率低.为此,提出了基于卷积神经网络的一维VGG数据异常识别模型,建立了由统计回归、稳健回归、一维VGG识别模型等模型库和Pauta准则、MZ准则等判别准则库共同构成的大坝安全数据异常识别模型簇,并构建了不同数据类型与异常识别模型及预警准则的匹配机制.工程校验表明:一维VGG模型对不同序列长度、不同台阶占比的数据序列均具有较好的识别效果,能有效弥补传统回归模型和稳健回归模型的不足,由前述3 种模型及两种准则共同构建的异常识别模型簇可实现海量数据异常的在线精准、快速识别,为大坝安全在线监测提供可靠的数据支持.
Research on anomaly recognition model cluster for dam safety monitoring data
The anomaly recognition of monitoring data is the premise and foundation of online monitoring of dam operation safe-ty.It is difficult to achieve efficient and accurate recognition by a single identification method,while the RREW model is easy to miss the data sequence with poor regularity and single step type,and the calculation efficiency is low.To this end,a 1D-VGG da-ta anomaly recognition model based on convolutional neural network was proposed.And the dam safety data anomaly recognition model cluster consisting of model libraries such as statistical regression model,robust regression model,1D-VGG model and dis-criminant criteria such as Pauta criterion and MZ criterion was established.Then the matching mechanism between different data types and anomaly recognition models and early warning criteria was constructed.The engineering verification showed that the 1D-VGG data anomaly recognition model had good recognition effect on data sequences with different sequence lengths and differ-ent step proportions,and can effectively make up for the shortcomings of traditional regression model and robust regression model.The anomaly recognition model cluster constructed by the above three models and two criteria can realize online accurate and rap-id identification of massive data anomalies,and provide reliable data support for online monitoring of dam safety.

dam safety monitoringdata anomaly recognition1D convolutional neural networkmodel clusterautomatic matching criteria

邓乙丁、李艳玲、徐颖、陈天赐

展开 >

四川大学 水力学与山区河流开发保护国家重点实验室,四川 成都 610065

四川大学 水利水电学院,四川 成都 610065

中国长江电力股份有限公司 溪洛渡水力发电厂,云南 昭通 657300

大坝安全监测 数据异常识别 一维卷积神经网络 模型簇 自匹配准则

国家重点研发计划

2018YFC0407103

2024

人民长江
水利部长江水利委员会

人民长江

CSTPCD北大核心
影响因子:0.451
ISSN:1001-4179
年,卷(期):2024.55(4)
  • 23