人民长江2024,Vol.55Issue(7) :20-28.DOI:10.16232/j.cnki.1001-4179.2024.07.003

考虑时空特征的城市内涝智能预报模型研究

Study on urban waterlogging intelligent forecast model considering temporal and spatial characteristics

赵杏杏 左翔 蔡文静 刘修恒
人民长江2024,Vol.55Issue(7) :20-28.DOI:10.16232/j.cnki.1001-4179.2024.07.003

考虑时空特征的城市内涝智能预报模型研究

Study on urban waterlogging intelligent forecast model considering temporal and spatial characteristics

赵杏杏 1左翔 1蔡文静 1刘修恒2
扫码查看

作者信息

  • 1. 南京河海智慧水利研究院,江苏南京 210012;南京中禹智慧水利研究院有限公司,江苏南京 210012
  • 2. 河海大学 计算机与信息学院,江苏 南京 211100
  • 折叠

摘要

针对传统城市内涝预报模型计算耗时长、实测内涝样本少、内涝特征因子欠考虑等问题,通过耦合SWMM模型和LISFLOOD-FP模型搭建了城市内涝机理模型,利用不同重现期下的设计暴雨进行数值模拟并生成内涝样本;基于样本和内涝特征因子构建了三维时空矩阵,实现对内涝特征因子数据的有序组织;在此基础上,将卷积神经网络(CNN)与长短时记忆网络(LSTM)进行耦合,构建了一种考虑多时空特征的城市内涝智能预报模型(CNN-LSTM);最后以三维时空矩阵为驱动,对该智能模型进行训练,选取广州市天河区的实测样本对其性能进行评估.结果表明:CNN-LSTM模型可以快速预报淹没水位和淹没范围,易涝控制点水位过程模拟的纳什效率系数在0.9 以上,各个时刻淹没面积的平均匹配率达到92.2%,相对于机理模型的模拟效率提高了近70 倍.该智能模型具有良好的预报精度和效率,可有效支撑城市防灾减灾工作.

Abstract

Given the problems of the traditional urban waterlogging forecast model,such as being time-consuming,few meas-ured waterlogging samples,and insufficient consideration of waterlogging characteristic factors,an urban waterlogging mechanism model was first built by coupling the SWMM model and the LISFLOOD-FP model.The mechanism model was used to numerical-ly simulate the designed rainstorm in different recurrence periods to generate waterlogging samples.Based on samples and water-logging characteristic factors,a three-dimensional spatio-temporal matrix was constructed to realize the orderly organization of waterlogging characteristic factor data.Based on the above,a convolutional neural network(CNN)was coupled with long short term memory network(LSTM),and an urban waterlogging intelligent forecast model considering multi-temporal characteristics(CNN-LSTM)was constructed.The intelligent model was trained by a three-dimensional space-time matrix using measured samples from Tianhe District,Guangzhou City.The results show that the CNN-LSTM model can quickly predict the inundation depth and inundation range.The Nash coefficient of waterlogging control point water level simulation was above 0.9,and the aver-age matching rate of the inundated area at every moment reached 92.2%.Compared with the mechanism model,the simulation ef-ficiency was improved by nearly 70 times.The intelligent model had good forecasting accuracy and efficiency,and could effectively support the work of urban waterlogging prevention and disaster reduction.

关键词

城市内涝预报/智能模型/时空特征/卷积神经网络/长短时记忆网络

Key words

urban waterlogging forecast/intelligent model/spatio-temporal characteristics/convolutional neural network/long short term memory network

引用本文复制引用

基金项目

国家重点研发计划项目(2021YFB3900601)

江苏省水利科技项目(2022050)

江苏省水利科技项目(2022064)

江苏省水利科技项目(202304)

出版年

2024
人民长江
水利部长江水利委员会

人民长江

CSTPCD北大核心
影响因子:0.451
ISSN:1001-4179
参考文献量11
段落导航相关论文