人民长江2024,Vol.55Issue(7) :240-246.DOI:10.16232/j.cnki.1001-4179.2024.07.031

基于机器学习的岩石节理面力学性能分析及预测

Analysis on mechanical properties of fractured rock mass and intelligent prediction based on machine learning

林永贵 王海波 魏立新 徐江平 马辉
人民长江2024,Vol.55Issue(7) :240-246.DOI:10.16232/j.cnki.1001-4179.2024.07.031

基于机器学习的岩石节理面力学性能分析及预测

Analysis on mechanical properties of fractured rock mass and intelligent prediction based on machine learning

林永贵 1王海波 2魏立新 1徐江平 1马辉1
扫码查看

作者信息

  • 1. 广州市市政工程设计研究总院有限公司,广东 广州 510060
  • 2. 中山大学 航空航天学院,广东 深圳 518107
  • 折叠

摘要

在岩土及隧道工程中,准确判定破碎岩体的宏观力学性能对工程设计和施工建造至关重要,而不同岩石节理形貌直接影响其宏观力学性能.为了有效界定节理岩体的力学性能,首先将频谱分形维数D和频域幅值积分Rq 作为节理形貌的量化表征参数,进一步基于傅里叶变换技术,设计了可指定形貌特征的节理重构方法,并结合3D打印技术对包含不同形貌节理的破碎岩石进行了直剪试验,验证了所采用的数值模拟方法的准确性.在此基础上,对不同节理形貌的岩石力学性能开展参数分析,研究结果表明分形维数D和频域幅值积分Rq 是能有效量化和评价节理形貌的参数.最后基于遗传算法改进的BP神经网络,构建了分形维数D、频域幅值积分Rq、法向压力、摩擦系数与破碎岩石力学性能之间的映射关系,形成了一种考虑节理形貌特性的破碎岩石力学性能智慧预测方法.

Abstract

Accurate determination of macroscopic mechanical properties of fractured rock mass is critical in geotechnical and tunnel engineering for effective design and construction.The mechanical behavior of these rock masses is directly influenced by the various morphologies of rock joints.In light of this,this study employed the spectrum fractal dimension D and frequency do-main amplitude integral Rq as quantitative parameters to characterize joint morphology.Furthermore,a joint reconstruction method utilizing Fourier transform technology was devised to precisely define the shape characteristics.To validate the proposed approach,direct shear tests were conducted on rocks with different joint morphologies,employing a combination of 3D printing and numerical analysis techniques.The numerical calculation model was subsequently calibrated for accuracy.Building upon these findings,a systematic parameter analysis was performed to evaluate the rock mechanics performance across diverse joint morphologies.The research results indicated that fractal dimension D and frequency domain amplitude integral Rq are effective parameters for quanti-fying and evaluating joint morphology.Finally,based on the genetic algorithm improved BP neural network,a quantitative mapping relationship between fractal dimension D,frequency domain amplitude integral Rq,normal pressure,friction coefficient and the me-chanical properties of fractured rocks was constructed,forming an intelligent prediction method for the mechanical properties of fractured rocks that considers the characteristics of joint morphology.

关键词

节理形貌分析/节理量化重构/数值模拟/直剪试验/机器学习

Key words

joint morphology analysis/quantitative reconstruction of joints/numerical simulation/direct shear test/machine learning

引用本文复制引用

基金项目

国家自然科学基金青年基金项目(52208381)

出版年

2024
人民长江
水利部长江水利委员会

人民长江

CSTPCD北大核心
影响因子:0.451
ISSN:1001-4179
参考文献量10
段落导航相关论文