人民长江2024,Vol.55Issue(9) :18-25.DOI:10.16232/j.cnki.1001-4179.2024.09.003

基于集成学习与深度学习的洪水径流预报研究

Research on flood runoff forecasting based on ensemble learning and deep learning

许月萍 周欣磊 王若桐 刘莉 顾海挺
人民长江2024,Vol.55Issue(9) :18-25.DOI:10.16232/j.cnki.1001-4179.2024.09.003

基于集成学习与深度学习的洪水径流预报研究

Research on flood runoff forecasting based on ensemble learning and deep learning

许月萍 1周欣磊 1王若桐 2刘莉 1顾海挺1
扫码查看

作者信息

  • 1. 浙江大学 水科学与工程研究所,浙江 杭州 310058
  • 2. 浙江工业大学 土木工程学院,浙江 杭州 310023
  • 折叠

摘要

深度学习模型凭借其对水文因素间复杂作用的优秀处理能力,在水文预报领域得到了一定的应用,然而,针对集成学习与深度学习耦合模型的研究仍有所缺失.通过融合集成学习AdaBoost算法与深度学习In-former模型,提出了一种组合模型,称为AdaBoost-Informer模型,以提高洪水径流预报的精度.该模型以历史雨量和径流数据作为数据输入,将具备长时序依赖捕获能力的Informer作为集成学习的弱预测器,使用网格搜索法进行超参数调优,使用AdaBoost集成学习算法对弱预测器进行加权组合得到强预测器.在浙江省椒江流域的应用分析表明:对比Random Forest、AdaBoost、Transformer、Informer等模型,AdaBoost-Informer模型表现最佳,RMSE为62.08 m3/s,MAE为23.83 m3/s,NSE为0.980,预报合格率为100%.所提模型可有效提高洪水预报精度,为防汛抢险和防洪系统调度提供决策依据.

Abstract

Deep learning models have demonstrated exceptional capabilities in managing the intricate interactions among hydro-logical factors,leading to their adoption in hydrological forecasting.Nonetheless,there remains a gap in researches on the integra-tion of ensemble learning with deep learning models.This study introduced a novel combined model,termed AdaBoost-Informer model,which integrates the AdaBoost algorithm with the Informer deep learning model to enhance flood runoff forecasting accura-cy.The model utilizes historical precipitation and runoff data as input,with the Informer model,known for its proficiency in captu-ring long-term dependencies,serving as the weak learner within the ensemble framework.Hyperparameters are optimized using grid search,and AdaBoost is employed to weight and aggregate the weak learners into a robust predictor.Evaluation in the Jiao-jiang River Basin in Zhejiang Province revealed that the AdaBoost-Informer model outperforms other models such as Random Forest,AdaBoost,Transformer,and Informer,achieving an RMSE of 62.08 m3/s,an MAE of 23.83 m3/s,an NSE of 0.980,and a forecasting success rate of 100%.This model can significantly enhance the precision of flood forecasts and offer a valuable basis for decision-making in flood prevention and emergency management.

关键词

洪水径流预报/集成学习/深度学习/组合模型/Informer算法/椒江流域

Key words

flood runoff forecasting/ensemble learning/deep learning/combining model/Informer algorithm/Jiaojiang River Basin

引用本文复制引用

基金项目

浙江省重点研发项目(2021C03017)

国家自然科学基金项目(52309038)

出版年

2024
人民长江
水利部长江水利委员会

人民长江

CSTPCD北大核心
影响因子:0.451
ISSN:1001-4179
参考文献量9
段落导航相关论文