人民长江2024,Vol.55Issue(9) :203-209.DOI:10.16232/j.cnki.1001-4179.2024.09.027

基于可解释性分析的大坝变形监控模型对比研究

Comparison of monitoring model for dam deformation based on interpretability analysis

黄海燕 艾星星 刘兴阳 李占超 仇建春
人民长江2024,Vol.55Issue(9) :203-209.DOI:10.16232/j.cnki.1001-4179.2024.09.027

基于可解释性分析的大坝变形监控模型对比研究

Comparison of monitoring model for dam deformation based on interpretability analysis

黄海燕 1艾星星 2刘兴阳 2李占超 2仇建春2
扫码查看

作者信息

  • 1. 云南水利水电职业学院,云南 昆明 650499
  • 2. 扬州大学 水利科学与工程学院,江苏 扬州 225100
  • 折叠

摘要

近年来,经典统计模型和机器学习模型在大坝安全监控领域并行发展,然而前者的"预测能力"和后者的"可解释性"通常存在一定局限,且关于量化多重因素对大坝监测量影响程度的对比研究相对较少.基于闽江支流上GTX重力坝的水平位移和垂直位移原型监测数据,分别采用多元线性回归(MLR)、偏最小二乘回归(PLS)、随机森林算法(RF)建立兼顾预测能力和解释能力的大坝变形监控模型;同时,针对每种模型开展特征重要性分析,探究不同因素对大坝变形的影响程度.研究结果表明:3 种模型中随机森林模型的拟合能力最佳,偏最小二乘回归模型的预测能力最佳;3 种模型提供的可解释性基本符合实际规律,且特征重要性排序规律定性一致,水压分量和温度分量对该坝体位移影响显著,时效分量所占比例最低.研究成果可为后续开展大坝安全监控模型优选提供参考.

Abstract

In recent years,classical statistical models and machine learning models have parallelly developed in dam safety mo-nitoring field.However,the'predictive ability'of the former and the'interpretability'of the latter usually have certain limitations,and there are relatively few comparative studies on the impact of quantitative multiple factors on dam monitoring measured data.Based on the prototype monitoring data of horizontal displacement and vertical displacement of GTX gravity dam on the tributary of Minjiang River,this paper used multiple linear regression(MLR),partial least squares regression(PLS)and random forest algo-rithm(RF)to establish different dam deformation monitoring models that takes both predictive ability and interpretability into ac-count.At the same time,the feature importance analysis was carried out for each model to explore the influence of different factors on dam deformation.The results showed that the random forest model had the best fitting ability and the partial least squares re-gression model had the best prediction ability among the three models.The interpretability provided by the three models was basi-cally in line with the actual law,and the order of feature importance was consistent:the water pressure component and the temper-ature component had a significant impact on the displacement of the dam body,and the proportion of the aging component was the lowest.The research results can provide reference for the subsequent optimal selection of dam safety monitoring model.

关键词

大坝/安全监控/机器学习/统计模型/特征重要性

Key words

dam/safety monitoring/machine learning/statistical model/feature importance

引用本文复制引用

基金项目

国家自然科学基金项目(52309173)

出版年

2024
人民长江
水利部长江水利委员会

人民长江

CSTPCD北大核心
影响因子:0.451
ISSN:1001-4179
参考文献量13
段落导航相关论文