人民长江2024,Vol.55Issue(10) :110-118.DOI:10.16232/j.cnki.1001-4179.2024.10.015

基于VMD-LSTM模型的三峡水库水面蒸发量预测研究

Water surface evaporation prediction of Three Gorges Reservoir based on VMD-LSTM model

彭玉洁 张冬冬 徐高洪 王卫光 郭卫 林涛涛
人民长江2024,Vol.55Issue(10) :110-118.DOI:10.16232/j.cnki.1001-4179.2024.10.015

基于VMD-LSTM模型的三峡水库水面蒸发量预测研究

Water surface evaporation prediction of Three Gorges Reservoir based on VMD-LSTM model

彭玉洁 1张冬冬 2徐高洪 2王卫光 3郭卫 2林涛涛4
扫码查看

作者信息

  • 1. 长江水利委员会水文局,湖北武汉 430010;河海大学水文水资源学院,江苏 南京 210098
  • 2. 长江水利委员会水文局,湖北武汉 430010
  • 3. 河海大学水文水资源学院,江苏 南京 210098
  • 4. 长江水利委员会水文局长江三峡水文水资源勘测局,湖北宜昌 443000
  • 折叠

摘要

为减少水面蒸发非线性、复杂性和不稳定性等特征带来的预测误差,基于"分解-预测-重构"的策略,提出VMD-LSTM水面蒸发预测模型.该模型耦合长短期记忆神经网络(LSTM)与变分模态分解法(VMD),利用变分模态分解将水面蒸发及其主要影响因素分解为相同数量的子模态分量以降低数据的非平稳性,将对应子模态分量作为长短期记忆神经网络的输入,构建VMD-LSTM深度神经网络混合模型,并应用于三峡水库巴东站的月水面蒸发量预测.结果表明:VMD-LSTM模型较其他模型具有预测精度更高、峰谷值拟合更优的特点,与单一LSTM模型相比,率定期均方根误差(RMSE)、平均绝对百分比误差(MAPE)分别下降了54%和48%,而纳什效率系数(NSE)提升了11%.随着预见期的增加,模型的预测精度会逐渐降低但预测效果保持良好,当预见期从1 个月增至7 个月时,率定期NSE由0.97 降至0.84.研究成果可为三峡水库水资源合理利用与科学管理提供理论支撑.

Abstract

To reduce the prediction errors caused by the nonlinear,complex,and unstable characteristics of water surface evapo-ration,a VMD-LSTM water surface evaporation prediction model was introduced,employing a"decomposition-prediction-re-construction"framework.This model integrated Long Short-Term Memory(LSTM)neural network with Variational Mode De-composition(VMD).The VMD technique was utilized to decompose water surface evaporation and its primary influencing factors into an equivalent number of sub-mode components,thereby addressing issues of data non-stationarity.These sub-mode com-ponents served as inputs for the LSTM neural network,then we developed a hybrid deep neural network model named VMD-LSTM,which was applied to forecast monthly water surface evaporation at the Badong Station in the Three Gorges Reservoir.The results indicated that the VMD-LSTM model outperforms alternative models in terms of prediction accuracy and peak-valley fit-ting.Compared to a standalone LSTM model,the calibration period root mean square error(RMSE)and mean absolute percentage error(MAPE)was reduced by 54%and 48%,respectively,while the Nash Efficiency Coefficient(NSE)demonstrated an in-crease of 11%.Although the model's predictive accuracy diminishes with an extended forecast period,it maintains satisfactory per-formance.Specifically,as the forecast period extends from one month to seven months,the calibration period NSE decreases from 0.97 to 0.84.The research findings can provide valuable theoretical insights for the effective utilization and scientific management of water resources in the Three Gorges Reservoir.

关键词

水面蒸发预测/变分模态分解/长短期记忆神经网络/三峡水库

Key words

water surface evaporation prediction/variational mode decomposition/long short-term memory neural network/Three Gorges Reservoir

引用本文复制引用

基金项目

国家自然科学基金联合基金项目(U2240218)

国家自然科学基金项目(52309004)

出版年

2024
人民长江
水利部长江水利委员会

人民长江

CSTPCD北大核心
影响因子:0.451
ISSN:1001-4179
参考文献量21
段落导航相关论文