人民长江2024,Vol.55Issue(10) :246-254.DOI:10.16232/j.cnki.1001-4179.2024.10.033

基于KPCA降维分析的特高拱坝监测模型

Monitoring model for super high arch dams based on KPCA dimension reduction analysis

王子轩 陈德辉 欧斌 杨石勇 傅蜀燕
人民长江2024,Vol.55Issue(10) :246-254.DOI:10.16232/j.cnki.1001-4179.2024.10.033

基于KPCA降维分析的特高拱坝监测模型

Monitoring model for super high arch dams based on KPCA dimension reduction analysis

王子轩 1陈德辉 1欧斌 1杨石勇 1傅蜀燕1
扫码查看

作者信息

  • 1. 云南农业大学水利学院,云南 昆明 650201;云南省中小型水利工程智慧管养工程研究中心,云南昆明 650201
  • 折叠

摘要

为提高大坝变形预测精度,针对变形数据影响因子间的多重共线性问题,构建了基于核主成分分析(KPCA)、全局搜索策略的鲸鱼优化算法(GSWOA)和门控循环单元(GRU)的组合预测模型.首先利用KPCA对高维变形序列进行降维处理,同时使用GSWOA对GRU参数进行优化,进而构建出最优变形预测模型.以小湾特高拱坝变形数据为例,将KPCA-GSWOA-GRU模型与KPCA-WOA-GRU模型、PCA-GSWOA-GRU模型以及传统模型进行预测拟合对比.结果表明:KPCA-GSWOA-GRU模型有效降低了多重共线性问题,且在均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和决定系数(R2)等方面均优于对比模型.

Abstract

In order to improve the prediction accuracy of dam deformation,a prediction model based on kernel principal compo-nent analysis(KPCA),global search strategy whale optimization algorithm(GSWOA)and gated recurrent unit(GRU)was con-structed to solve the multicollinearity problem among influence factors of deformation data.Firstly,KPCA was used to reduce the dimension of high-dimensional deformation sequence,and then GSWOA was used to optimize the GRU parameters,so the opti-mal deformation prediction model was constructed.Taking the deformation data of Xiaowan super high arch dam as an example,the prediction effect of KPCA-GSWOA-GRU model was compared with KPCA-WOA-GRU model,PCA-GSWOA-GRU model and traditional models.The results showed that the KPCA-GSWOA-GRU model not only effectively reduced the multi-collinearity problem,but also outperformed the compared model in terms of root mean square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE)and coefficient of determination(R2).The research results provide a theoreti-cal basis and technical support for verifying the validity of KPCA-GSWOA-GRU model on a wider data set and its application in other dam deformation prediction in the future.

关键词

特高拱坝/变形监测/降维分析/核主成分分析(KPCA)/全局搜索策略的鲸鱼优化算法(GSWOA)/门控循环单元(GRU)/小湾水电站

Key words

super high arch dam/deformation monitoring/dimension reduction analysis/kernel principal component analysis(KPCA)/global search strategy whale optimization algorithm(GSWOA)/gated recurrent unit(GRU)/Xiaow-an Hydropower Station

引用本文复制引用

基金项目

国家自然科学基金项目(52069029)

国家自然科学基金项目(52369026)

水灾害防御全国重点实验室2023年度"一带一路"水与可持续发展科技基金项目(2023490411)

云南省农业基础研究联合专项面上项目(202401BD070001-071)

出版年

2024
人民长江
水利部长江水利委员会

人民长江

CSTPCD北大核心
影响因子:0.451
ISSN:1001-4179
参考文献量15
段落导航相关论文