人民长江2024,Vol.55Issue(12) :229-236.DOI:10.16232/j.cnki.1001-4179.2024.12.030

大坝运行安全在线监控IPSO-LSTM模型研究

Study on IPSO-LSTM model for online monitoring dam operation safety

戴霈霖 李艳玲 周子玉
人民长江2024,Vol.55Issue(12) :229-236.DOI:10.16232/j.cnki.1001-4179.2024.12.030

大坝运行安全在线监控IPSO-LSTM模型研究

Study on IPSO-LSTM model for online monitoring dam operation safety

戴霈霖 1李艳玲 1周子玉2
扫码查看

作者信息

  • 1. 四川大学水利水电学院,四川成都 610065
  • 2. 中国电建集团中南勘测设计研究院有限公司,湖南长沙 410014
  • 折叠

摘要

构建合理在线监控模型是实时掌控大坝安全性态的重要保障.针对LSTM模型受多参数组合影响、最优参数泛化能力弱、人工选取参数难的问题,深入分析了学习率、分块尺寸、最大迭代次数和隐藏层单元数等关键参数对大坝安全在线监控模型精度的影响规律,提出了融合非线性惯性权重、收缩因子及柯西扰动项的粒子群优化改进算法(IPSO),并与LSTM模型耦合构建了针对大坝安全监控的IPSO-LSTM模型.工程校验表明:该模型能自动搜寻最优参数、精度高、鲁棒性强,适用于不同类型、不同长度的大坝安全监测数据序列,相对人工定参的LSTM模型误差至少能降低30%.相关经验可为大坝运行安全在线监控提供技术支持.

Abstract

Constructing a reasonable online monitoring model is an important guarantee for real-time control on dam safety.Ai-ming at the problems of conventional LSTM model such as easily affected by multi-parameters combination,weak generalization ability of optimal parameters and difficult manual selection of parameters,the influence of key parameters such as learning rate,block size,maximum number of iterations and number of hidden layer units on the accuracy of dam safety online monitoring model were deeply analyzed.An improved particle swarm optimization algorithm(IPSO)integrating nonlinear inertia weight,shrinkage factor and Cauchy disturbance term was proposed,and the IPSO-LSTM model for dam safety monitoring was constructed by cou-pling with LSTM model.The engineering verification showed that this model can automatically search for the optimal parameters,has high accuracy and strong robustness,and is suitable for dam safety monitoring data sequences of different types and lengths.The error can be reduced by at least 30%compared with the conventional LSTM model with artificial parameters.Relevant experi-ences can provide technical support for online monitoring of dam operation safety.

关键词

大坝安全/监控模型/粒子群优化改进算法(IPSO)/长短时神经网络(LSTM)/自动寻优

Key words

dam safety/monitoring model/improved particle swarm optimization algorithm(IPSO)/long and short time neu-ral network(LSTM)/automatic optimization

引用本文复制引用

出版年

2024
人民长江
水利部长江水利委员会

人民长江

CSTPCD北大核心
影响因子:0.451
ISSN:1001-4179
段落导航相关论文