首页|基于BiLSTM-NFC的地下水埋深预测方法研究

基于BiLSTM-NFC的地下水埋深预测方法研究

扫码查看
为了提高地下水埋深预测的精度,提出了双向长短时记忆循环神经网络(BiLSTM)融合非全连接神经网络(NFC)的深度学习模型.使用自适应矩估计优化函数(Adam),耦合双曲正切(Tanh)、软最大逻辑回归(Softmax)和线性整流单元(ReLU)3个激活函数,且将学习率设置为动态的,以黄河下游人民胜利渠灌区1993—2018年的地下水埋深预测为例,将BiLSTM-NFC与BiLSTM、长短时记忆循环神经网络(LSTM)及LSTM-NFC的预测结果进行对比分析.结果表明:双向网络的性能优于单向网络,NFC可以防止过拟合,还能明显降低模型的均方误差(MSE);与BiLSTM、LSTM-NFC和LSTM相比,BiLSTM-NFC的学习能力、稳定性、可靠性及泛化能力最强;BiLSTM-NFC在测试集上的准确率(Acc)可以达到100%,最接近无偏估计,MSE比LSTM的减小96.60%,平均相对误差(MRE)减小85.63%,相关系数(r)增大34.81%;模型在图形处理单元(GPU)上比在中央处理单元(CPU)上训练时间明显缩短,合理设置多种激活函数可以解决单一激活函数的弊端;使用BiLSTM-NFC可以准确地预测地下水埋深的变化情况.
Research on Groundwater Depth Prediction Method Based on BiLSTM⁃NFC

刘鑫、韩宇平、刘中培、黄会平

展开 >

华北水利水电大学 水利学院,河南 郑州450046

华北水利水电大学 测绘与地理信息学院,河南 郑州450046

地下水埋深预测 双向长短时记忆循环神经网络 非全连接神经网络 深度学习模型 自适应矩估计优化函数 耦合激活函数 动态学习率

国家自然科学基金水利部"948"项目

51679089201328

2021

人民黄河
水利部黄河水利委员会

人民黄河

CSTPCD北大核心
影响因子:0.494
ISSN:1000-1379
年,卷(期):2021.43(6)
  • 2
  • 9