首页|基于CIWOA-BP和灰色置信区间的银川市需水量预测模型

基于CIWOA-BP和灰色置信区间的银川市需水量预测模型

扫码查看
需水量预测是水资源科学配置和调度的基础,为提高其合理性,针对需水量变化的波动、不确定性特点,提出一种改进鲸鱼算法(CIWOA)优化BP神经网络与灰色置信区间估计相结合的需水量区间预测模型.利用灰色关联分析筛选需水量影响因子,输入CUBIC混沌映射和自适应权重改进的鲸鱼算法优化BP模型(CIWOA-BP),结合灰色置信区间估计建立组合区间预测模型,对银川市需水量进行模拟预测.结果表明:CIWOA-BP模型预测精度高于普通鲸鱼算法优化BP模型(WOA-BP)、遗传算法优化BP模型(GA-BP);CIWOA-BP模型与灰色置信区间的组合模型优于其与BOOTSTRAP区间估计组合,在置信度 90%时需水量区间预测合理、可靠.
Prediction Model of Water Demand in Yinchuan City Based on CIWOA-BP and Grey Confidence Interval
Water demand prediction is the foundation of scientific allocation and scheduling of water resources.In order to improve its ration-ality,an improved whale algorithm(CIWOA)optimized BP neural network combined with grey confidence interval estimation was proposed to address the fluctuation and uncertainty characteristics of water demand changes.The influence factors of water demand were screened by grey correlation analysis.Cubic chaotic mapping and whale algorithm modified by adaptive weight were input to optimize the BP model(CI-WOA-BP).Combined with grey confidence interval estimation,the combined interval prediction model was established to simulate and fore-cast the water demand of Yinchuan City.The results show that the prediction accuracy of CIWOA-BP model is better than that of conventional whale algorithm optimization BP model(WOA-BP)and genetic algorithm optimization BP model(GA-BP).The combination model of CI-WOA-BP model and grey confidence interval is superior to the Bootstrap interval estimation model,and the prediction of water demand inter-val is reasonable and reliable when the confidence is 90%.

whale algorithmBP neural networkgrey confidence intervalwater demand forecastYinchuan City

南宏业、李翠梅、王浩、何岩、周焯

展开 >

苏州科技大学 环境科学与工程学院,江苏 苏州 215009

中国水利水电科学研究院,北京 100038

昆山水务集团有限公司,江苏 昆山 215003

鲸鱼算法 BP神经网络 灰色置信区间 需水量预测 银川市

国家自然科学基金资助项目苏州市科技计划项目苏州市水利水务科技项目

511091532022SS092022008

2024

人民黄河
水利部黄河水利委员会

人民黄河

CSTPCD北大核心
影响因子:0.494
ISSN:1000-1379
年,卷(期):2024.46(1)
  • 15