首页|基于Sentinel-2多光谱遥感影像的小浪底水质反演

基于Sentinel-2多光谱遥感影像的小浪底水质反演

扫码查看
多光谱遥感技术可根据遥感波段信息反演水质参数,降低监测成本,提高监测速度和质量,为大范围水环境监测提供了一种新的方法.通过分析小浪底水库的Sentinel-2 多光谱影像以及采样点实测水质数据,建立了最佳光谱波段的水质参数反演模型,对小浪底水库的化学需氧量(COD)、总磷(TP)、总氮(TN)和氨氮(NH3-N)进行了遥感反演,验证了反演模型的精确度和稳定性,并反演了各水质参数的空间分布规律.结果表明:在 4 种水质参数反演模型中,COD模型精确度和稳定性最高,其次是TP、TN,最低的是NH3-N,水库出水口和部分边缘COD质量浓度较高,水库中心TN、TP和NH3-N质量浓度高于边缘处.
Remote Sensing Inversion of Water Quality of Xiaolangdi Reservoir Based on Sentinel-2 Multi-Spectral Images
Multi-spectral remote sensing technology can retrieve water quality parameters based on remote sensing band information,reduce monitoring costs,improve monitoring speed and quality,and provide a new way for large-scale water environment monitoring.Through analy-zing the correlation of Sentinel-2 multi-spectral images and measured water quality data of the Xiaolangdi Reservoir on the Yellow River,an inversion model of water quality parameters in the best spectral band was established,and the remote sensing inversion of chemical oxygen demand(COD),total phosphorus(TP),total nitrogen(TN)and ammonia nitrogen(NH3-N)of the Xiaolangdi Reservoir was carried out.The accuracy and stability of inversion models were verified and the spatial distribution of each water quality parameter was inverted.The re-sults show that among the four water quality parameter inversion models,the precision and stability of COD model is the highest,followed by TP,TN and the lowest is NH3-N,the COD concentration at the outlet and some edges of the reservoir is relatively higher and the concentra-tions of TN,TP and NH3-N in the center of the reservoir are higher than those at the edges.

multi-spectral remote sensingwater quality inversionsentinel-2inversion modelXiaolangdi Reservoir

郭荣幸、王超梁、陈济民、韩红印

展开 >

郑州航空工业管理学院 智能工程学院,河南 郑州 450046

黄河水利委员会 信息中心,河南 郑州 450004

多光谱遥感 水质反演 Sentinel-2 反演模型 小浪底水库

河南省科技攻关项目河南省科技攻关项目河南省高等学校重点科研项目

22210232039021210221038924A520051

2024

人民黄河
水利部黄河水利委员会

人民黄河

CSTPCD北大核心
影响因子:0.494
ISSN:1000-1379
年,卷(期):2024.46(1)
  • 9