首页|一种基于多分类器和证据理论融合的水质分类方法

一种基于多分类器和证据理论融合的水质分类方法

扫码查看
针对单分类器对不同水质类别识别不均衡、水质分类准确率较低、适应性较差的问题,提出一种基于多分类器和证据理论融合的水质分类方法.选取深度神经网络分类器、改进支持向量机分类器和贝叶斯分类器 3 种分类器,通过全概率公式构建信度函数,基于证据理论对信度函数进行融合,获得多分类器融合模型.从国家地表水水质自动站发布的 2022 年 3 月 1-22 日水质数据中选取 3 558 条数据为样本集,采用DNN水质分类模型、PSO-SVM水质分类模型、贝叶斯水质分类模型和多分类器融合模型对待测样本进行测试.结果表明:多分类器融合模型对水质类别判定的平均准确率、精确率、召回率和F1 值分别为94.2%、93.8%、94.2%和 94.0%.相较于DNN水质分类模型、PSO-SVM水质分类模型、贝叶斯水质分类模型,多分类器融合模型准确率分别提高5.6%、9.8%和 13.6%,精确率分别提高 5.2%、10.0%和 10.9%,召回率分别提高 5.6%、9.8%和 13.6%,F1 值分别提高 5.4%、10.2%和12.3%,多分类器融合模型在水质分类方面的准确性和适应性更高.
A Water Quality Classification Method Based on the Fusion of Multiple Classifiers and Dempster-Shafer Theory
A water quality classification method based on the fusion of multiple classifiers and evidence theory was proposed to address the is-sues of uneven recognition,low accuracy and poor adaptability of single classifiers for different water quality categories.This method selected three classifiers of deep neural network classifier,improved support vector machine classifier and Bayesian classifier.The reliability function is built by the full probability formula and based on evidence theory,the reliability function was fused to obtain a multi classifier fusion mod-el.It selected 3,558 pieces of water quality data from March 1-22,2022 released by the National Surface Water Quality Automatic Station as the sample set and used DNN water quality classification model,PSO-SVM water quality classification model,Bayesian water quality classifi-cation model and multi-classifier fusion model to test the samples.The results show that the average accuracy,precision,recall and F1 values of the multi classifier fusion model for water quality classification are 94.2%,93.8%,94.2%and 94.0%respectively.Compared to the DNN water quality classification model,PSO-SVM water quality classification model and Bayesian water quality classification model,the accuracy of multi-classifier fusion model has been improved by 5.6%,9.8%and 13.6%respectively,the precision by 5.2%,10.0%and 10.9%re-spectively,the recall by 5.6%,9.8%and 13.6%respectively and the F1 values by 5.4%,10.2%and 12.3%respectively.The multi classi-fier fusion model has better accuracy and adaptability in water quality classification.

water quality classificationmultiple classifiersneural networkintegration of evidence theory

项新建、颜超龙、费正顺、郑永平、李可晗

展开 >

浙江科技学院 自动化与电气工程学院,浙江 杭州 310000

水质分类 多分类器 神经网络 证据理论融合

浙江省自然科学基金资助项目浙江省自然科学基金资助项目浙江省重点研发计划项目

LY19F030004LQ16F0300022018C01085

2024

人民黄河
水利部黄河水利委员会

人民黄河

CSTPCD北大核心
影响因子:0.494
ISSN:1000-1379
年,卷(期):2024.46(1)
  • 4