首页|基于VMD-TCN-GRU模型的水质预测研究

基于VMD-TCN-GRU模型的水质预测研究

扫码查看
为充分挖掘水质数据在短时震荡中的变化特征,提升预测模型的精度,提出一种基于VMD(变分模态分解)、TCN(卷积时间神经网络)及GRU(门控循环单元)组成的混合水质预测模型,采用VMD-TCN-GRU模型对汾河水库出水口高锰酸盐指数进行预测,并与此类研究中常见的SVR(支持向量回归)、LSTM(长短期记忆神经网络)、TCN和CNN-LSTM(卷积神经网络-长短期记忆神经网络)这 4 种模型预测结果对比表明:VMD-TCN-GRU模型能更好挖掘水质数据在短时震荡过程中的特征信息,提升水质预测精度;VMD-TCN-GRU模型的MAE(平均绝对误差)、RMSE(均方根误差)下降,R2(确定系数)提高,其MAE、RMSE、R2 分别为0.055 3、0.071 7、0.935 1;其预测性能优越,预测精度更高且拥有更强的泛化能力,可以应用于汾河水质预测.
Water Quality Prediction Based on VMD-TCN-GRU Model
In order to fully excavate the variation characteristics of water quality data in short-term shocks and improve the accuracy of pre-diction model,we proposed a VMD-TCN-GRU water quality prediction model based on Variational Mode Decomposition(VMD),Temporal Convolutional Network(TCN),and Gated Recurrent Unit(GRU).The VMD-TCN-GRU model was applied to predict the permanganate in-dex at the outlet of Fenhe River Reservoir.Comparative analysis with commonly used models in water quality prediction,including Support Vector Regression(SVR),Long Short-Term Memory(LSTM),TCN,and Convolutional Neural Network and Long Short-Term Memary(CNN-LSTM),demonstrates that the VMD-TCN-GRU model excels in extracting features during short-term oscillations in water quality data,identifying actual patterns of variation,facilitating comprehensive model learning,and thereby improving prediction accuracy.The VMD-TCN-GRU model achieves a Mean Absolute Error(MAE)of 0.055 3,Root Mean Square Error(RMSE)of 0.071 7,and a determination co-efficient R2 of 0.935 1,indicating high predictive accuracy and strong generalization capabilities.This model can be effectively applied to wa-ter quality prediction tasks in the Fenhe River.

water quality predictionmixed modelVariational Mode DecompositionTemporal Convolution NetworkGated Recurrent Unittime seriesFenhe River

项新建、许宏辉、谢建立、丁祎、胡海斌、郑永平、杨斌

展开 >

浙江科技学院 自动化与电气工程学院,浙江 杭州 310023

凯铭科技(杭州)有限公司,浙江 杭州 310023

水质预测 混合模型 变分模态分解 卷积时间神经网络 门控循环单元 时间序列 汾河

浙江省自然科学基金资助项目浙江省自然科学基金资助项目浙江省重点研发计划项目杭州市科技发展计划项目

LY19F030004LQ16F030002202206202203B21

2024

人民黄河
水利部黄河水利委员会

人民黄河

CSTPCD北大核心
影响因子:0.494
ISSN:1000-1379
年,卷(期):2024.46(3)
  • 15