首页|基于LSTM的水文站流量短期预测建模差异性研究

基于LSTM的水文站流量短期预测建模差异性研究

扫码查看
当前水文预测模型研究缺乏对不同流域神经网络建模参数差异性选择的分析,模型的适应性较低,不利于模型推广运用.为此,选取黄河流域 3 个子流域为研究对象,基于离散小波算法和长短期记忆人工神经网络(LSTM)模型对不同特征子流域的水文站进行参数差异性建模研究,以提高水文预测模型的适应性.结果表明:历史流量周期性好、受人类活动影响小的水文站,可以基于水文站历史流量建立预测模型;对于受上游流量影响较大的干流水文站,预测模型仅依据水文站历史流量的预测性较低,若结合上游水文站流量,模型预测精度会有所提高,且考虑的上游水文站距预测水文站越远,模型可预测更长时间的流量;对于河道流量小、受地下水和降雨影响较大的流域,预测模型仅依据水文站历史流量的预测性较低,结合降水量可提高预测精度.
Research on the Difference of Short-Term Prediction Modeling of Hydrological Station Flow Based on LSTM
Current hydrological prediction model studies lack analysis of the differential selection of modeling parameters for neural networks in different watersheds,and the adaptability of the model is low,which is not conducive to the promotion and application of the model.In this study,three sub-basins of the Yellow River Basin were selected as the research objects,and the parameter differences of hydrological stations in different characteristic sub-basins were modeled based on the discrete wavelet algorithm and Long Short-Term Memory(LSTM)model.The aim was to improve the adaptability of hydrological prediction models.The results show that for hydrological stations with good periodicity of historical flow and less human influence,a prediction model can be built based on the historical flow of the station.For mainstream hydrologi-cal stations with greater influence from upstream flow,the predictive power of the model based solely on the historical flow of the station is lower.Combining the upstream flow,it can improve the prediction accuracy of the model.Moreover,the farther the upstream hydrological sta-tion considered is from the predicted hydrological station,the longer the flow can be predicted by the model.For basins with small river flow and significant influence from groundwater and precipitation,the predictive power of the model based solely on the historical flow of the sta-tion is lower,but incorporating rainfall can improve the prediction accuracy.

LSTMdiscrete wavelethydrological predictiontime-frequency analysisYellow River Basin

乔长建、刘震、邰建豪

展开 >

河南财经政法大学 资源与环境学院,河南 郑州 450001

河南省城乡空间数据挖掘院士工作站,河南 郑州 450001

LSTM 离散小波 水文预测 时频分析 黄河流域

河南省自然科学基金河南省科技攻关计划自然资源部地理国情监测重点实验室开放基金

2023004100302021023105262020NGCM04

2024

人民黄河
水利部黄河水利委员会

人民黄河

CSTPCD北大核心
影响因子:0.494
ISSN:1000-1379
年,卷(期):2024.46(6)
  • 13