首页|基于可解释机器学习的黄河源区径流分期组合预报

基于可解释机器学习的黄河源区径流分期组合预报

扫码查看
黄河源区是黄河流域重要的产流区和我国重要的清洁能源基地,提高黄河源区径流预报准确率可为流域水资源科学调配和水风光清洁能源高效利用提供重要支撑.以黄河源区唐乃亥和玛曲水文站为研究对象,基于不同月份径流组分的差异,考虑积雪覆盖率及融雪水当量变化,构建了中长期径流分期组合机器学习预报模型及其可解释性分析框架.研究结果表明:1)年内的径流预报时段可划分为融雪影响期(3-6月)和非融雪主导(以降雨和地下水补给为主)期(7 月—次年 2 月);2)与传统不分期模型相比,唐乃亥站和玛曲站分期组合预报模型的纳什效率系数分别达 0.897、0.835,确定系数(R2)分别达 0.897、0.839,均方根误差分别降低了 10%、17%,提高了径流预报准确率,通过分位数映射校正,唐乃亥站和玛曲站预报模型的R2分别进一步提升至 0.926 和0.850;3)基于SHAP机器学习可解释性分析框架,辨识了预报因子对径流预报结果的贡献程度,由高到低依次为降水、前一个月流量、蒸发、气温、相对湿度、融雪水当量等,发现了不同预报因子之间交互作用散点分布具有拖尾式或阶跃式的特征.
Combined Forecasting of Streamflow in the Source Region of the Yellow River Based on Interpretable Machine Learning
The source region of the Yellow River is an important runoff-producing area of the Yellow River Basin and an essential clean ener-gy base in China.Improving the accuracy of streamflow forecasting in the source region of the Yellow River will provide significant support for the scientific allocation of water resources in the basin and the efficient production of wind and solar clean energy.This article took Tangnaihai and Maqu hydrological stations in the source region of the Yellow River as research objects.Based on the differences in streamflow compo-nents in different months,considering the changes in snow coverage and snowmelt water equivalent,a medium and long-term streamflow stag-ing combined machine learning forecasting model and its interpretable analysis framework were built.The research results show that a)the streamflow forecasting period within the year can be divided into a snowmelt-affected period(March to June)and a non-snowmelt-dominated period(mainly precipitation and groundwater recharge)(July to February of the following year);b)Compared with the traditional non-stag-ing model,the Nash efficiency coefficients of the staging combined forecasting model reach 0.897 and 0.835 respectively,and the coefficient of determination(R2)reaches 0.897 and 0.839,with a reduction in root mean square error by 10%and 17%,improving the accuracy of streamflow forecasting at Tangnaihai and Maqu stations.Through quantile mapping correction,the R2 of the forecasting models at Tangnaihai and Maqu stations is further improved to 0.926 and 0.850;c)Based on the interpretability analysis framework of SHAP machine learning,the contribution degree of forecasting factors to the runoff forecast results is identified,from high to low,as precipitation,previous month's discharge,evaporation,temperature,relative humidity and snowmelt water equivalent.It is found that the scatter distribution of the interac-tion between different forecasting factors has the characteristics of trailing or stepping.

medium and long-term streamflow forecaststaging combinationsmachine learninginterpretabilitysource regions of Yellow River

黄强、尚嘉楠、方伟、杨程、刘登峰、明波、沈延青、祁善胜、程龙

展开 >

西安理工大学 省部共建西北旱区生态水利国家重点实验室,陕西 西安 710048

青海黄河上游水电开发有限责任公司,青海 西宁 810000

中国电建集团 西北勘测设计研究院有限公司,陕西 西安 710065

中长期径流预报 分期组合 机器学习 可解释性 黄河源区

国家自然科学基金黄河水科学研究联合基金中国博士后科学基金国家重点研发计划

U22432162021M6926022023YFC3006502

2024

人民黄河
水利部黄河水利委员会

人民黄河

CSTPCD北大核心
影响因子:0.494
ISSN:1000-1379
年,卷(期):2024.46(9)