首页|基于IF-Encoder的大坝监测异常数据检测算法

基于IF-Encoder的大坝监测异常数据检测算法

扫码查看
大坝安全监测数据中的异常值会对大坝安全分析、决策的正确性和及时性产生影响.为准确高效地检测大坝安全监测数据中的异常值,提出一种基于IF-Encoder的异常数据检测算法,基于时间序列间的相关性对目标序列进行重构,对比重构序列与目标序列残差的大小来识别异常值.另外依据规范要求,提出一种基于相关性的异常值鉴定方法,针对检测出的异常值进行真实异常、虚假异常划分,在保留真实异常值的情况下,对虚假异常值进行剔除处理.结果表明:相比四分位法、拉伊达准则、KNN最近邻法、DBSCAN聚类法,IF-Encoder算法检测异常值的查全率、查准率、准确率有所提升,其对异常值的识别更加可靠、有效.基于相关性的异常值鉴定方法对真实异常的鉴定准确率为 92%,对虚假异常的鉴定准确率为 100%,可有效对异常值进行划分.
Algorithm for Detecting Abnormal Data of Dam Monitoring Based on IF-Encoder
The outliers in dam safety monitoring data can have an impact on the correctness and timeliness of dam safety analysis and deci-sion-making.In order to accurately and efficiently detect outliers in dam safety monitoring data,an anomaly data detection algorithm based on IF Encoder was proposed.The target sequence was rebuilt based on the correlation between time series,and the residual size between the re-built sequence and the target sequence was compared to identify outliers.In addition,according to regulatory requirements,a correlation based outlier identification method was proposed,which divided the detected outliers into true and false anomalies,and removed false anoma-lies while retaining the true outliers.The results show that compared with the quartile method,Rayda criterion,KNN nearest neighbor meth-od,and DBSCAN clustering method,the IF-Encoder algorithm has improved recall,precision,and accuracy in detecting outliers,and its recognition of outliers is more reliable and effective.The correlation based outlier identification method has an accuracy rate of 92%for identifying true anomalies and 100%for identifying false anomalies,which can effectively classify outliers.

Isolated Forestsoutlier detectioncorrelationConvolutional Long Short Term Neural Networks

刘鹤鹏、李登华、丁勇

展开 >

南京理工大学 理学院,江苏 南京 210094

南京水利科学研究院,江苏 南京 210029

水利部水库大坝安全重点实验室,江苏 南京 210029

孤立森林 异常值检测 相关性 卷积长短期神经网络

国家重点研发计划项目国家自然科学基金资助项目国家自然科学基金联合基金资助项目中央级公益性科研院所基本科研业务费专项

2022YFC300550251979174U2040221Y322008

2024

人民黄河
水利部黄河水利委员会

人民黄河

CSTPCD北大核心
影响因子:0.494
ISSN:1000-1379
年,卷(期):2024.46(10)
  • 15