首页|燃气轮机透平叶片低周疲劳寿命及可靠性分析

燃气轮机透平叶片低周疲劳寿命及可靠性分析

扫码查看
为保证燃气轮机安全可靠地运行,对透平叶片进行了分析,获得了叶片在额定工况下的应力及应变分布;采用深度全连接神经网络,搭建了高精度代理模型,评估了多源不确定性因素影响下的燃气轮机透平叶片低周疲劳寿命及可靠性.结果表明:叶片的最大应力为1 024.91 MPa,位于叶片叶根平台吸力面侧中部;材料和加工随机因素下的透平叶片寿命均值为1.237×104周,工况随机因素下的透平叶片寿命均值为1.146×104周;叶片设计寿命取为8.0×103周时,透平叶片在材料和加工随机因素影响下的可靠度为0.945 2,在工况随机因素下的可靠度为0.936 8.研究结果表明了所提供方法在叶片可靠性分析中的有效性,为燃气轮机透平叶片设计优化、性能提升以及寿命管理提供了参考数据.
Analysis of gas turbine blade low-cycle fatigue life and reliability
To ensure the safe and reliable operation of gas turbines,an analysis was conducted on a specific turbine blade to obtain the stress and strain distribution under rated conditions.A high-precision surrogate model was built using a deep fully-connected neural network to assess the impact of multiple sources of uncertainty on the low-cycle fatigue life and reliability of the turbine blades.The results indicate that the maximum stress in the turbine blade is 1 024.91 MPa,located in the middle of the suction side of the blade root platform.The mean life of the blade under material and manufacturing stochastic factors is 1.237 × 104 cycles,while under operational stochastic factors,it is 1.146 × 104 cycles.The design life of the blade was set at 8.0 × 103 cycles,with a reliability of 0.945 2 under material and manufacturing influences,and 0.936 8 under operational influences.The findings demonstrate the effectiveness of the proposed method in the reliability analysis of turbine blades,providing reference data for the design optimization,performance enhancement,and life management of gas turbine turbine blades.

gas turbinebladelow-cycle fatigue lifereliabilitydeep-learning neural network(DNN)

焦继翔、李金星、张荻、谢永慧

展开 >

西安交通大学能源与动力工程学院,西安 710049

燃气轮机 叶片 低周疲劳寿命 可靠性 深度学习神经网络

2024

燃气涡轮试验与研究
中国燃气涡轮研究院

燃气涡轮试验与研究

影响因子:0.146
ISSN:1672-2620
年,卷(期):2024.37(6)