首页|基于改进YOLOv5s的鱼雷检测算法

基于改进YOLOv5s的鱼雷检测算法

扫码查看
针对目前深海鱼雷检测中存在检测精度低和检测速度慢的问题,提出了一种基于改进YOLOv5s的鱼雷检测算法.使用可分离视觉变换器(SepViT)模块来替换主干层网络最后一层中的C3 模块,增强骨干网络与全局信息的联系以及鱼雷特征的提取,降低漏检率和误检率.在YOLOv5s网络模型的主干层网络中引入ECA注意力机制,提高复杂的深海环境下检测模型对于鱼雷深层次关键特征的提取能力,同时避免了降维,以有效的方式捕捉跨通道的交互信息,以此来提高鱼雷检测模型的检测精度.将网络模型颈部层中的路径聚合网络(PANet)替换为双向特征金字塔网络(BiFPN),采用跨尺度连接去除路径聚合网络(PANet)中对特征融合贡献较小的节点,实现多尺度特征的快速融合,提高鱼雷检测模型的检测效率.实验结果表明:改进的YOLOv5s鱼雷检测算法的均值平均精度(mAP)达到了97.0%,较原来的YOLOv5s算法提高了3.7%,检测速度达83 FPS,有效地提高了深海鱼雷检测的精度和速度.
Torpedo detection algorithm based on improved YOLOv5s
Aiming at the problems of low detection accuracy and slow detection speed in deep-sea torpedo detection,a torpedo detection algorithm based on improved YOLOv5s is proposed.The separable Vision converter(SepViT)block is used to replace the C3 modules in the last layer of the backbone network to enhance the connection between the backbone network and the global information,to extract the torpedo features,and to reduce the omission rate and error-detection rate.ECA attention mechanism is introduced into the backbone layer network of YOLOv 5s network model to improve the extraction ability of the detection model for torpedo deep level key features in the complex deep-sea environment,avoid dimension reduction,and capture cross channel interactive information in an effective way to improve the detection accuracy of the torpedo detection model.The Path Aggregation Network(PANet)in the neck layer of the network model is replaced by the Bidirectional Feature Pyramid Network(BiFPN),and cross scale connection is used to remove the nodes in the Path Aggregation Network(PANet)that have less contribution to feature fusion to achieve rapid fusion of multi-scale features and to improve the detection efficiency of the torpedo detection model.The experimental results show that the mean average accuracy(mAP)of the improved YOLOv5s torpedo detection algorithm reaches 97.0%,which is 3.7 percentage points higher than the original YOLOv5s algorithm,and the detection speed reaches 83 FPS,which effectively improves the accuracy and speed of deep-sea torpedo detection.

torpedo detectionYOLOv5sdeep learningseparable vision transformerattention mechanismbidirectional feature pyramid network

崔陈、甘文洋、朱大奇

展开 >

上海海事大学智能海事搜救与水下机器人上海工程技术研究中心,上海 201306

上海理工大学上海市水下工程检测专业技术创新服务平台,上海 200093

鱼雷检测 YOLOv5s 深度学习 可分离视觉变换器 注意力机制 双向特征金字塔网络

国家自然科学基金国家自然科学基金国家重点研发计划资助项目

62033009521013622021YFC2801300

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(1)
  • 23