首页|基于图像与航迹信息融合的目标属性识别方法

基于图像与航迹信息融合的目标属性识别方法

扫码查看
针对单一雷达传感器目标属性识别能力低的问题,提出基于D-S证据理论的雷达航迹与光电图像信息融合的目标属性识别方法,对光电图像和雷达航迹特征分别使用ResNet网络和XGBoost网络进行目标属性识别,将得到的类别概率赋值通过D-S组合规则融合得到最终的目标属性识别结果.实验研究表明:无论是在远距离或近距离目标属性识别能力上,融合后模型的识别能力均比融合前单一模型的识别能力强,且融合后的模型能够矫正因为单一模型识别错误而导致最终识别结果错误的问题,融合后的模型在测试集上各类别的平均召回率比光电图像分类模型提高了3%,比雷达航迹分类模型提高了10%,融合后模型的平均召回率为95%.
Target attribute recognition method based on image and track information fusion
In response to the problem of low target attribute recognition capability of single radar sensor,a target attribute recognition method based on D-S evidence theory of the information fusion of radar trajectory and photoelectric image is proposed.ResNet network and XGBoost network are used for target attribute recognition of photoelectric images and radar trajectory features respectively,and the obtained category probability assignments are fused by D-S combination rules to obtain the final target attribute recognition results.The experimental study shows that the fused model has better recognition capability than the single model before fusion in both long-range or close-range target attribute recognition,and the fused model can correct the problem of incorrect recognition results caused by the single model.The average recall of the fused model for each category on the test set improved by 3% over the photoelectric image classification model and by 10% over the radar track classification model,with an average recall of 95% for the fused model.

target attribute recognitionradarD-S evidence theoryResNetXGBoost

李正东、杨帆、王长城、周颖玥

展开 >

西南科技大学信息工程学院,四川绵阳 621000

中国兵器装备集团自动化所有限公司,四川绵阳 621000

西南科技大学特殊环境机器人技术四川省重点实验室,四川绵阳 621000

目标属性识别 雷达 D-S证据理论 ResNet XGBoost

"十四五"预研基金四川省科技计划资助西南科技大学"课程思政"示范课程建设项目

6280102052021YFG038321szkc52

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(2)
  • 13