首页|基于同步提取广义S变换的机械故障诊断方法研究

基于同步提取广义S变换的机械故障诊断方法研究

扫码查看
现有的同步提取变换(synchroextracting transform,SET)窗函数固定缺乏灵活性,在进行故障诊断时很难有效获取到高时频精度和高抗干扰性能的瞬时频率,针对此问题,结合广义S变换可以自适应调节窗函数宽度的优点,提出一种基于同步提取广义S变换(synchroextracting generalized Stransform,SEGST)的机械故障诊断方法.SEGST方法的特点在于将Rényi熵作为度量时频聚集性的标准,通过在高斯窗函数中引入2 个尺度调节因子来选择参数的最佳值,对得到的广义S变换二维时频谱构造出同步提取算子来提取时频脊线处的时频系数,该算子能保留与信号的时变特征最相关的TF信息,剔除多余的模糊时频能量,从而得到高时频分辨率的时频能量特征.仿真结果表明,所提方法不论在时频分辨率方面,还是在噪声鲁棒性方面,都优于传统时频分析方法,并且保持了良好的重构性.最后,将所提方法应用于航空发动机高速滚动轴承故障诊断中,结果表明,该方法能够准确识别故障信号中的特征频率.
Research on mechanical fault diagnosis method based on synchro-extractinggeneralized S-transform
The existing Synchroextracting Transform(SET)window function lacks flexibility,which makes it difficult to obtain transient frequencies with high time-frequency accuracy and high anti-interference performance when performing fault diagnosis.The SEGST method is characterized by using the R ényi entropy as a measure of time-frequency aggregation,introducing two scale adjustment factors in the Gaussian window function to select the optimal values of the parameters,and constructing a synchronous extraction operator for the two-dimensional time-frequency spectrum of the obtained generalized S transform.A simultaneous extraction operator is constructed to extract the time-frequency coefficients at the time-frequency ridges,which can retain the TF information most relevant to the time-varying characteristics of the signal and eliminate the redundant fuzzy time-frequency energy,thus obtaining time-frequency energy features with high time-frequency resolution.The simulation results show that the proposed method outperforms the conventional time-frequency analysis methods in terms of both time-frequency resolution and noise robustness,and maintains good reconfigurability.Finally,the proposed method is applied to the fault diagnosis of high-speed rolling bearings in aero-engines,and the results show that the method can accurately identify the characteristic frequencies in the fault signals.

Synchroextracting Transformgeneralized S-transformtime-frequency analysismechanical fault diagnosisaero-engine

葛丽英、李志农、胡志峰、毛清华、张旭辉

展开 >

南昌航空大学无损检测技术教育部重点实验室,南昌 330063

西安科技大学陕西省矿山机电装备智能监测重点实验室,西安 710054

同步提取变换 广义S变换 时频分析 机械故障诊断 航空发动机

国家自然科学基金江西省自然科学基金重点项目陕西省矿山机电装备智能监测重点实验室

5207523620212ACB202005SKL-MEEIM201901

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(2)
  • 21