首页|基于切片推理的小目标检测技术研究

基于切片推理的小目标检测技术研究

扫码查看
针对高分辨率图像中小目标识别精度低且漏检率高的问题,从模型训练和预测角度,包含特征融合、预测框定位损失函数和检测网络3 个方面进行优化,提出一种基于切片推理的改进YOLOv5 算法.将CAM模块添加到特征融合网络中,通过扩张卷积提升特征感受野尺度,增强了小目标及其相邻像素的上下文学习效果;使用Focal_EIOU损失函数替换原CIOU损失函数,将预测框与真实框的宽高差异最小化,更加关注有效目标的预测结果,提升了预测框定位精度和损失函数的收敛速度;在检测网络中添加SAHI算法,利用切片思想放大局部特征并对切片结果分别进行预测,提升了图像局部特征的检出效果,降低了小目标的漏检率.经实验对比,本文中改进算法能够有效提取深层网络中的小目标特征,相比于原YOLOv5 算法,边界框定位损失明显下降且收敛较快,小目标识别准确率提高了4.4%,小目标检出率增加为原来的2 倍,能够有效应用于高分辨率图像的小目标检测任务.
Research on small target detection technology based on slicing aided inference
Aiming at the problems of low recognition accuracy and high detection rate of small targets in high-resolution images,this paper optimizes three aspects from the perspective of model training and prediction,including feature fusion,prediction block position loss function and detection network,and proposes an improved YOLOv5 algorithm based on slice reasoning.Firstly,the CAM module was added to the feature fusion network,and the scale of the feature receptive field was increased by expanding convolution,which enhanced the contextual learning effect of the small target and its adjacent pixels.Secondly,the Focal_EIOU loss function was used to replace the original CIOU loss function,which minimized the difference of width and height between the prediction frame and the real frame,paid more attention to the effective target prediction results,and improved the positioning accuracy of the prediction frame and the convergence rate of the loss function.Finally,the SAHI algorithm was added to the detection network,and the slice idea was used to magnify local features and predict the slice results respectively,which improved the detection effect of local features and reduced the omission rate of small targets.Compared with the original YOLOv5 algorithm,the bounding box positioning loss is significantly reduced and the convergence is faster.The recognition accuracy of small targets is improved by 4.4% ,and the detection rate of small targets is twice of the original,which can be effectively applied to the small target detection task in high-resolution images.

target recognitionsmall object detectionfeature fusionsliced inferenceloss function

刘玉雯、刘文逸、唐云龙、彭沛、何维真、韩星烨

展开 >

西北机电工程研究所,陕西咸阳 712099

目标识别 小目标检测 特征融合 切片推理 损失函数

西安市科技计划项目

2020KJRC0030

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(2)
  • 16