首页|涡轮叶片装配智能优化算法

涡轮叶片装配智能优化算法

扫码查看
涡轮组件装配是发动机制造过程的重要组成部分,在装配过程中为保证涡轮叶片装配完成后的转子不平衡量符合设计标准,需对叶片进行分组试装等步骤,装配效率因此受到影响.为解决此问题,提出一种基于改进模拟退火算法的叶片装配序列优化方法.建立由轮盘自身不平衡量与叶片不平衡量相结合的数学模型,采用多邻域搜索机制,改进退火机制,增加升温、记忆模块等方法来改进算法,通过实例验证了算法的有效性,并与蝴蝶算法,天鹰算法,原始模拟退火算法进行比较,有效地降低了涡轮转子不平衡量.结果表明,改进的模拟退火算法能够有效的减少叶片装配后的不平衡量.为使该算法能够更方便的服务于装配现场,基于MFC框架开发一款叶片装配软件,为解决叶片装配需进行多次拆装以及装配效率低的问题提供了一种有效的方案.
Intelligent optimization algorithm for turbine blade assembly
Turbine component assembly is an important component of the engine manufacturing process.In order to ensure that the rotor imbalance after turbine blade assembly meets the design standards,it is necessary to group and test assemble the blades,which affects the efficiency of assembly.To solve this problem,a blade assembly sequence optimization method based on improved Simulated annealing algorithm is proposed.A mathematical model is established that combines the imbalance of the disc itself with the imbalance of the blades.The algorithm is improved by using multi neighborhood search mechanism,improving annealing mechanism,adding heating and memory modules.The effectiveness of the algorithm is verified through examples,and compared with butterfly algorithm,skyhawk algorithm,and original Simulated annealing algorithm,which effectively reduces the unbalance of the turbine rotor.The results show that the improved Simulated annealing algorithm can effectively reduce the imbalance after blade assembly.In order to make the algorithm more convenient to serve the assembly site,a blade assembly software was developed based on the MFC framework,providing an effective solution to solve the problems of multiple disassembly and assembly efficiency in blade assembly.

aircraft engineturbine blade assemblyassembly sequence optimizationimproved simulated annealing algorithmrotor balance

赵磊、卢洪义、宋汉强、徐文聪、贺勃睿

展开 >

南昌航空大学 飞行器学院,南昌 330063

海军研究院,上海 200001

航空发动机 涡轮叶片装配 装配序列优化 改进模拟退火算法 转子平衡

江西省重点基金

20201BBE51002

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(4)
  • 15