首页|面向异形零件装配的精准视觉检测和分割算法

面向异形零件装配的精准视觉检测和分割算法

扫码查看
针对装备零件存在异形小目标识别不准确的问题,基于YOLOv7 视觉检测方法、U2 Net图像分割方法,设计了YOLOv7-GTBM小目标检测方法和U2 Net-MGP像素级图像分割方法,用于检测异形小目标.以SIM卡槽代替装备零件中的异形小零件作为实验对象,首先利用小目标检测方法对SIM卡槽进行粗定位,再应用像素级图像分割方法准确的分割其边缘轮廓,最后根据SIM卡槽的实际装配需要完成后续操作.实验结果表明:该方案在检测效果和分割精度上都优于其他算法,抓取SIM卡槽的成功率达到98%.
Accurate visual detection and segmentation algorithm for special-shaped parts assembly
In order to solve the problem of inaccuracy in the recognition of special-shaped small targets in parts in industrial production,based on YOLOv7 visual detection method and U2Net image segmentation method,this paper designs YOLOv7-GTBM small target detection method and U2NET-MGP pixel-level image segmentation method for the detection of special-shaped small targets.In this paper,the SIM card slot replaces the special-shaped small parts in industrial parts as the experimental object.Firstly,the SIM card slot is roughly located by small target detection method,and then the edge contour is accurately segmented by pixel-level image segmentation method.Finally,the subsequent operations are completed according to the actual assembly needs of the SIM card slot.The experimental results show that the scheme is superior to other algorithms in both detection effect and segmentation accuracy,and the success rate of capturing SIM card slot reaches 98%.

small targettarget detectionimage segmentationspecial-shaped parts

熊沛霖、陈雯柏、张波、穆蔚文

展开 >

北京信息科技大学 自动化学院,北京 100192

小目标 目标检测 图像分割 异形零件

国家自然科学基金

62276028

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(5)
  • 28