首页|基于优化生成对抗模型的涡轮发动机转子不平衡异常检测方法研究

基于优化生成对抗模型的涡轮发动机转子不平衡异常检测方法研究

扫码查看
为探究转子系统在高温环境下出现的不平衡异常,以及克服异常检测领域中对时间序列信息不敏感,需人为提取潜在特征等难题,聚焦于高温环境下转子系统的不平衡异常检测,提出一种优化生成对抗模型.该模型结合长短期记忆网络对时间序列数据处理的优点以及自编码器网络优良的潜在分布映射能力,仅以正常数据进行训练,有效解决了异常数据量不足的问题,其过程也实现了无监督训练.以某弹用涡轮发动机高压转子系统不平衡异常检测为例,在600℃工作环境下对所提方法进行验证,模型能对不平衡发生的异常时刻进行较为准确的判断,实现了端到端的特征提取以及不平衡状态异常检测.将该网络模型与其他 3 类异常检测算法进行了对比,结果表明,所提模型的评价指标均位于99%以上,可以更加有效地评判转子系统时序数列样本的健康状况,具备更加全面的异常评判效果,能较好地为涡轮发动机的正常使用寿命时间提供指导建议.
Research on anomaly detection of turbine engine rotor unbalance based on optimized generative adversarial model
In order to investigate the anomaly detection of rotor unbalance under high-temperature conditions and to overcome challenges of the deficiencies of losing valuable data and insensitivity to the information of time sequence,an optimized generative adversarial model has been explored in this paper.This model only uses normal data as input,combining the advantages of LSTM network for time series data processing and VAE network for excellent analysis of potential features,which effectively address the problem of insufficient anomaly data,and achieve unsupervised training.Taking the example of the high-pressure rotor system of a missile turbine engine operating at 600℃,the model can make reasonably accurate judgments regarding the moments when the unbalance occurs.This approach could achieve end-to-end feature extraction and anomaly detection of unbalance.In addition,this model has been compared to another three types of anomaly detection algorithms.The results show that the evaluation indicators of proposed model are all above 99%,which can more effectively assess the healthy status of time-series information,providing a more comprehensive anomaly assessment and offering valuable guidance for the normal operational lifespan of turbine engines.

rotor unbalanceturbine engineoptimized GANanomaly detectionhigh-temperature envi-ronment

陈泓铭、杨曦荻、余玲、朱春明、肖兴权

展开 >

重庆长安望江工业集团有限公司,重庆 401120

转子不平衡 涡轮发动机 优化生成对抗 异常检测 高温环境

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(6)
  • 6