首页|基于特征融合的轻量化巡飞弹目标跟踪算法

基于特征融合的轻量化巡飞弹目标跟踪算法

扫码查看
针对巡飞弹平台上的视觉目标跟踪算法,开始引入深度学习思想,但是受到硬件平台算力限制的影响,提出一种轻量化的基于深度学习的孪生网络框架,在较低计算量的情况下保证巡飞弹的跟踪性能.根据IOU质量评估分支和回归分支结构,提出了一种新的特征融合方式.通过1×1 卷积调整特征层通道数,控制通道数比例,对不同特征层的通道按比例进行深浅层特征拼接,用于后续的特征融合模块.在特征拼接前,引入特征合并的方法来获得有不同感受野的融合特征,进一步提高特征分辨率.将提出的新特征融合方式和特征合并方式进行纵向与横向的特征融合,充分利用特征属性,提高算法性能.根据巡飞弹硬件平台的属性限制,框架采用轻量化的AlexNet网络作为骨干网络.在OTB100、GOT-10K、UAV123 三个数据集上测试,框架整体以160 fps的帧率保证了较高准确度和成功率.在满足巡飞弹特殊工作环境的基础上,实现了较为先进的跟踪性能.整体框架相对简单且性能较高,有较好的跟踪实时性,可加入其他模块来进一步提升跟踪性能.
Lightweight cruise missile object tracking algorithm based on feature fusion
Aiming at the situation where the visual target tracking algorithm on the cruise missile platform began to incorporate deep learning techniques but was limited by the computational power of the hardware platform,a lightweight deep learning-based Siamese network framework was proposed.This framework ensured the tracking performance of the cruise missile while operating under lower computational load.Based on an IOU quality evaluation branch and a regression branch,a new feature fusion method was proposed.By using 1×1 convolution to adjust the number of channels in the feature layers and controlling the ratio of channel numbers,the channels of different feature layers were concatenated proportionally according to their depths and used for subsequent feature fusion modules.Before feature concatenation,a method called feature combination was employed to obtain fused features with varying receptive fields,thereby further enhancing feature resolution.The proposed new feature fusion method and feature combination approach combine features vertically and horizontally,effectively utilized the feature attributes and improved algorithm performance.According to the hardware platform attributes of the cruise missile,a lightweight backbone network called AlexNet was adopted.The algorithm was tested on three datasets:OTB100,GOT-10K,and UAV123,the overall structure ensures a high accuracy and success rate at 160 fps real-time running speed.On the basis of satisfying the special working environment of cruise missiles,advanced relatively tracking performance has been achieved.The overall framework is relatively simple yet excellent,demonstrating good real-time tracking capabilities.Other modules can be integrated to further enhance the tracking performance.

object trackingfeature fusioncruise missilelightweightIOU quality assessment branchfeature combination

王子康、姚文进

展开 >

南京理工大学 机械工程学院,南京 210094

目标跟踪 特征融合 巡飞弹 算法轻量化 IOU质量评估分支,特征合并

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(6)
  • 3