首页|非同频场景下无人机遥控器信号参数估计方法

非同频场景下无人机遥控器信号参数估计方法

扫码查看
为了有效地管控和反制无人机,准确地估计无人机遥控器信号的参数,提出了一种非同频场景下无人机遥控器信号参数估计方法.该方法利用谱图变换法将信号转换为时频图,并对每个时隙的频谱进行插值以提高频域分辨率;借助全连接神经网络估计出每个时隙中的跳频信源个数;将门限自适应去噪算法和K-means算法相结合抑制噪声分量,估计出起跳时刻、跳频周期、中心频率以及总带宽等参数.实验表明,所提方法在上述参数估计性能方面相比2 种传统方法具有明显优势.
A method for estimating signal parameters of UAV remote controller in different frequency scenarios
The rapid development of drones not only brings help and convenience to all walks of life,but also brings serious impacts and threats to civil aviation safety,social security and even the ecological environment.Therefore,the control and countermeasures of drones have become urgent,and the estimation of the parameters of the remote controller signal of drones is an important technical means to control and counter drones.To solve this problem,a signal parameter estimation method of unmanned aerial vehicle(UAV)remote control in different frequency scenarios is proposed.In this method,the signal is transformed into time-frequency graph by using spectral graph transformation,and the frequency spectrum of each time slot is interpolated to improve the resolution of frequency domain.The threshold adaptive denoising algorithm and K-means algorithm are combined to suppress the noise components,and the parameters such as take-off time,frequency hopping period,center frequency and total bandwidth are estimated.Based on the measured data,the parameter estimation performance of the proposed method is compared with that of the two traditional methods.The experimental results show that the proposed method has obvious advantages in the performance of the above parameter estimation.

unmanned aerial vehicle(UAV)frequency hopping(FH)parameter estimationfully connected neural networkdifferent frequency

徐亚军、高田露、唐文波、张强、鲁合德

展开 >

中国民用航空飞行学院,四川 广汉 618307

无人机 跳频信号 参数估计 全连接神经网络 非同频

中央高校基本业务费基金项目四川省科技计划重点研发项目中央高校基本科研业务费专项

ZHMH2022-0072022YFG0353ZJ2023-007

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(7)
  • 6