首页|小样本下基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断

小样本下基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断

扫码查看
轮毂电机复杂多变的运行环境可能导致轴承故障而危及电动车辆行驶安全,为解决传统故障诊断方法在小样本条件下识别精度低的问题,提出一种基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断方法.首先,通过合成少数过采样技术(SMOTE)扩展训练数据集,生成与真实样本分布相似的故障样本,并使用主成分分析(PCA)优化其时域和频域的特征.然后,通过引入非线性收敛因子和Levy飞行策略改进传统的灰狼优化算法(GWO),使用改进的灰狼优化算法(IGWO)优化随机森林(RF)模型的参数.最后,基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断模型实现故障状态的识别,并在轮毂电机试验台架上进行了实验验证.结果表明,所提出的轮毂电机轴承故障诊断方法在7 种转速工况下平均准确率均超过96%,具有高精度和稳定性.与遗传算法(GA)、粒子群优化算法(PSO)、GWO优化RF相比,提出的IGWO-RF模型在3 种小样本训练集下的诊断准确率均超过90%,且准确率均明显高于其他3 个对比算法,能够有效实现小样本条件下的轮毂电机轴承故障诊断.
Bearing fault diagnosis of in-wheel motor based on SMOTE-IGWO-RF with small sample
The complex and dynamic operating environment of in-wheel motors may lead to bearing failures,posing risks to the safety of electric vehicle operation.In order to address the low identification accuracy of traditional fault diagnosis methods under small sample conditions,a bearing fault diagnosis method for in-wheel motors based on SMOTE-IGWO-RF is proposed.Firstly,the training dataset is expanded using synthetic minority over-sampling technique(SMOTE)to generate fault samples similar to the real sample distribution,and principal component analysis(PCA)is used to optimize their time and frequency domain features.Then,by introducing a nonlinear convergence factor and Levy flight strategy to improve the traditional grey wolf optimization(GWO)algorithm,the parameters of the random forest(RF)model are optimized using the improved grey wolf optimization(IGWO)algorithm.Finally,the bearing fault diagnosis model for in-wheel motors based on SMOTE-IGWO-RF is implemented to identify fault states,and experimental verification is conducted on the in-wheel motor test bench.The results indicate that the proposed bearing fault diagnosis method for in-wheel motors achieves an average accuracy exceeding 96%under seven different speed conditions,demonstrating high precision and stability.Compared to genetic algorithm(GA),particle swarm optimization algorithm(PSO),and GWO optimized RF,the proposed IGWO-RF model achieves diagnostic accuracies exceeding 90%under three small sample training sets.Moreover,its accuracy is significantly higher than the other three comparative algorithms,effectively realizing bearing fault diagnosis of in-wheel motors under small sample conditions.

in-wheel motorbearingsynthetic minority oversampling technique(SMOTE)improved gray wolf optimization algorithm(IGWO)random forest(RF)fault diagnosis

葛平淑、王朝阳、王阳、张涛、薛红涛、夏晨迪

展开 >

大连民族大学机电工程学院,辽宁大连 116600

江苏大学汽车与交通工程学院,江苏镇江 212013

锡林郭勒热电有限责任公司,内蒙古锡林郭勒 026000

轮毂电机 轴承 合成少数类过采样技术(SMOTE) 改进灰狼优化算法(IGWO) 随机森林(RF) 故障诊断

国家自然科学基金

52175078

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(8)