首页|基于机器学习的异步电机故障诊断方法

基于机器学习的异步电机故障诊断方法

扫码查看
针对以往异步电机故障诊断中特征提取能力不足导致诊断效果较差的问题,提出了一种基于机器学习的异步电机故障诊断方法,该方法使用了注意力机制(AM)的多尺度卷积神经网络(MSCNN)-双向长短时记忆网络(BiLSTM)的异步电机故障诊断模型,通过加入通道注意力机制改进学习机制,使用3 种不同尺度提取数据特征,使用BiLSTM对周期故障振动信号进行时序特征的提取,添加自注意力机制关注重点故障特征,引入残差模块减少噪声和冗余数据的影响,最后,通过Softmax分类输出诊断结果.结果表明,该模型能够有效提取数据集中的故障特征,与其他4 种常见模型进行对比,体现其稳定性和高诊断性能,针对异步电机故障诊断的准确率达到98.5%.
Machine learning based fault diagnosis method for asynchronous motors
Aiming at the problem of poor diagnostic effect due to insufficient feature extraction capability in previous asynchronous motor fault diagnosis,a machine learning-based asynchronous motor fault diagnosis method is proposed,which uses a multi-scale convolutional neural network(MSCNN)-bidirectional long and short-term memory network(BiLSTM)asynchronous motor fault diagnosis model of the attention mechanism(AM).We improve the learning mechanism by adding channel attention mechanism,and use three different scales to extract data features,use BiLSTM to extract temporal features of periodic fault vibration signals,add the self-attention mechanism to focus on the key fault features,introduce the residual module to reduce the influence of noise and redundant data,and finally,output the diagnostic results through Softmax classification.The experimental results show that the model can effectively extract the fault features in the dataset,and compared with the other four common models,reflecting its stability and high diagnostic performance,and the accuracy rate for asynchronous motor fault diagnosis reaches 98.5%.

asynchronous motorfault diagnosisconvolutional neural networkbidirectional long and short-term memory networkattention mechanism

霍琳、胡正宇、徐海、张磊、盖迪

展开 >

沈阳航空航天大学,沈阳 110135

中国民用航空沈阳航空器适航审定中心,沈阳 110043

异步电机 故障诊断 卷积神经网络 双向长短时记忆网络 注意力机制

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(8)
  • 10