首页|一种基于KPCA-ISSA-SVM的火控计算机电源故障诊断方法

一种基于KPCA-ISSA-SVM的火控计算机电源故障诊断方法

扫码查看
传统坦克故障诊断主要靠专家经验,投入人力大、花费时间长.为满足装甲装备的健康管理需求,提出了一种基于核主元分析和改进麻雀算法结合支持向量机的故障诊断方法.针对火控系统信号成分复杂、数据量少的问题,首先利用核主元分析降维提取故障数据的非线性特征,减少其他冗余特征对故障识别的影响,降低数据维度.引入混沌Tent映射和非线性惯性权重因子对麻雀搜索算法进行改进,优化支持向量机核心参数并建立故障诊断模型,同时与粒子群优化和鲸鱼优化的支持向量机模型进行实验对比.实验证明:该方法可以有效对坦克火控系统进行故障诊断,且在准确率和诊断效率方面性能较高.
A fault diagnosis method for fire control systems based on KPCA-ISSA-SVM
Traditional tank fault diagnosis mainly relies on expert experience,which requires a large amount of manpower and takes a long time.To meet the health management needs of armored equipment,a fault diagnosis method based on kernel principal component analysis and improved sparrow algorithm combined with support vector machine is proposed.In response to the problem of complex signal components and limited data volume in fire control systems,kernel principal component analysis is first used to reduce dimensionality and extract nonlinear features of fault data,reducing the impact of other redundant features on fault recognition and reducing data dimensions.Introducing chaotic Tent mapping and nonlinear inertia weighting factors to improve the sparrow search algorithm,optimizing the core parameters of support vector machine and establishing a fault diagnosis model,while conducting experimental comparisons with support vector machine models of particle swarm optimization and whale optimization.Experimental results have shown that this method can effectively diagnose faults in tank fire control systems,and has high performance in terms of accuracy and diagnostic efficiency.

fault diagnosisfire control systemsupport vector machinekernel principal component analysissparrow search algorithm

高锦涛、李英顺、郭占男、佟维妍

展开 >

沈阳工业大学化工过程自动化学院,沈阳 111003

大连理工大学控制科学与工程学院,辽宁大连 116200

故障诊断 火控系统 支持向量机 核主元分析 麻雀搜索算法

辽宁省科技计划

22JH1/1040007

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(8)
  • 13