首页|基于K近邻算法的空中目标威胁度判断方法

基于K近邻算法的空中目标威胁度判断方法

扫码查看
针对传统的空中目标威胁度评估方法具有计算量大,实时性差,难以适用于数据缺失的情况,提出采用K近邻算法(KNN)对任意来袭目标实现威胁度评估的方法.该方法提取了空中目标的状态信息特征作为输入数据,使用离差最大化方法构建数据集,目标威胁度等级作为输出数据,利用K近邻算法构建了目标威胁度评估模型.仿真实验结果表明,该方法能够实现高准确度、实时化的目标威胁度评估,和TOPSIS方法与离差最大化方法进行对比,证明该方法对空中目标异常特征值具有更高的决策效率,更加适用于现代战场的高复杂性,进一步体现了该方法的优越性和可行性.
A method for determining the threat degree of air targets based on K-Nearest neighbor algorithm
Aiming at the traditional air target threat assessment method has large computational energy,poor real-time performance,and is difficult to apply to the situation of lack of data,this paper proposes a method of using K nearest neighbor algorithm(KNN)to achieve threat assessment of any incoming target.In this method,the state information features of air targets are extracted as input data,the data set is constructed by using the dispersion maximization method,the target threat degree level is used as the output data,and the target threat evaluation model is constructed by using the K-nearest neighbor algorithm.Simulation results show that this method can achieve high-accuracy and real-time target threat assessment,and compare with TOPSIS method and dispersion maximization method,which proves that this method has higher decision-making efficiency for air target anomalous feature values and is more suitable for the high complexity of modern battlefields,which further reflects the superiority and feasibility of this method.

K-nearest neighbor algorithmthreat degree judgmentair targetunmanned system

张健、李强、张烨炜、米洋锐、贺泽仁

展开 >

中北大学机 电工程学院,太原 030051

K近邻算法 威胁度判断 对空目标 无人系统

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(9)
  • 14