首页|基于MPC和RBF神经网络的火箭弹姿态调整策略

基于MPC和RBF神经网络的火箭弹姿态调整策略

扫码查看
火箭弹的精准飞行控制目前是国内外军事领域研究中的一个热点话题.针对火箭弹如何能够更好的打击实现精确打击这一问题,提出一种基于模型预测控制和径向基函数神经网络相结合的火箭弹姿态调整策略.该策略利用模型预测控制算法预测得到姿态调整所需的最优的电机修正值,然后利用径向基函数神经网络算法实现对电机的快速调节响应,以此达到调整姿态修正弹道的目的.仿真结果表明,舵控系统的调整过程误差小、反应快、跟踪效果良好,整体策略具有优良的控制性能.使火箭弹飞行姿态控制系统的鲁棒性和快速性得到了很大的提高.很好的将模型预测算法与径向基函数神经网络算法的优点结合到了一起.
Attitude adjustment strategy of rocket based on MPC and RBF neural network
The precise flight control of rockets represents a topic of significant interest within the context of military research,both domestically and internationally.In order to address the issue of how rockets can be better struck in order to achieve precision strikes,an effective rocket attitude adjustment strategy based on the combination of model predictive control and radial basis function neural network is proposed.The strategy employs the model predictive control algorithm to predict the optimal motor correction value necessary for attitude adjustment.Subsequently,the radial basis function neural network algorithm is utilized to achieve a rapid adjustment response to the motor,thereby facilitating the desired attitude adjustment and trajectory correction.The simulation results demonstrate that the rudder control system exhibits minimal error,rapid response,and effective tracking,while the overall strategy demonstrates excellent control performance.The robustness and rapidity of the rocket flight attitude control system have been significantly enhanced.The advantages of the model prediction algorithm and the radial basis function neural network algorithm have been effectively integrated.

rocket projectilerudder control systembrushless DC motorballistic correctionattitude controlmodel predictive controlradial basis functionnetwork

王琦、易文俊、管军、高郅泽、徐雷

展开 >

南京理工大学瞬态物理国家重点实验室,南京 210094

南京理工大学机械工程学院,南京 210094

南京邮电大学 自动化学院、人工智能学院,南京 210023

火箭弹 舵控系统 直流无刷电机 弹道修正 姿态调整 模型预测控制 径向基函数神经网络

国家自然科学基金项目

62203191

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(10)